On the contribution of a hard galactic plane component to the excesses of secondary particles

  • The standard model of cosmic ray propagation has been very successful in explaining all kinds of galactic cosmic ray spectra. However, high precision measurement have recently revealed an appreciable discrepancy between data and model expectations, from spectrum observations of gamma-rays, e+/e- and probably the B=C ratio starting from ~10 GeV energy . In this work, we propose that a hard galactic plane component, supplied by the fresh cosmic ray sources and detained by local magnetic elds, can contribute additional secondary particles interacting with local materials. By properly choosing the intensity and spectral index of the harder component up to multi-T eV energy , a two-component gamma-ray spectrum is obtained and agrees very well with the observation. Simultaneously , the expected neutrino numbers from the galactic plane could contribute ~60% of IceCube observed neutrino number below a few hundreds of TeV under our model. In addition to these studies, we nd that the same pp-collision process responsible for the excess gamma ray emission could account for a signi cant amount of the positron excess, but a more detailed mechanism is needed for a full agreement. It is expected that the excesses in the p=p and B=C ratio will show up when energy is above ~10 GeV. We look forward this model being tested in the near future by new observations from AMS02, IceCube, AS-gamma, HA WC and future  experiments such as LHASSO, HiSCORE and CTA.
      PCAS:
  • 加载中
  • [1] O. Adriani et al, Nature, 458: 607-609(2009)
    [2] M. Aguilar et al, Phys. Rev. Lett., 110: 141102(2013)
    [3] L. Bergstrm, T. Bringmann, and J. Edsj, Phy. Rev. D, 78: 103520(2008)
    [4] V. Barger, W. Y. Keung, D. Marfatia, and G. Shaughnessy, Phys. Lett. B, 672: 141-146(2009)
    [5] P. F. Yin, Q. Yuan, J. Liu et al, Phy. Rev. D, 79: 023512(2009)
    [6] J. Zhang, X. J. Bi, J. Liu et al, Phy. Rev. D, 80: 023007(2009)
    [7] P. S. Bhupal Dev, D. K. Ghosh, N. Okada, and I. Saha, arXiv1307.6204
    [8] H. Yksel, M. D. Kistler, and T. Stanev, Phys. Rev. Lett., 103: 051101(2009)
    [9] D. Hooper, P. Blasi, and P. Dario Serpico, 2009, JCAP, 1: 25(2009)
    [10] H. B. Hu, Q. Yuan, B. Wang et al, ApJ, 700: L170-L173(2009)
    [11] P. Blasi, Phys. Rev. Lett., 103: 051104(2009)
    [12] O. Adriani et al, Phys. Rev. Lett., 102: 051101(2009)
    [13] P. Blasi and P. D. Serpico, Phys. Rev. Lett., 103: 081103(2009)
    [14] P. Mertsch and S. Sarkar, Phys. Rev. Lett., 103: 081104(2009)
    [15] M. Ahlers, P. Mertsch, and S. Sarkar, Phys. Rev. D, 80: 123017(2009)
    [16] P. Mertsch and S. Sarkar, Phys. Rev. D, 90: 061301(2014)
    [17] M. Ackermann et al, ApJ, 750: 3(2012)
    [18] A. A. Abdo et al, ApJ, 688: 1078-1083(2008)
    [19] H. J. Vlk and E. G. Berezhko, ApJ, 777: 149(2013)
    [20] M. Ackermann et al, AA, 538: 71(2012)
    [21] X. J. Bi, T. L. Chen, Y. Wang, and Q. Yuan, ApJ, 695: 883(2009)
    [22] A. M. Atoyan, F. A. Aharonian, and H. J. Vlk, Phys. Rev. D, 52: 3265-3275(1995)
    [23] M. G. Aartsen et al, Phys. Rev. Lett., 111: 021103(2013)
    [24] IceCube Collaboration, Science, 342: 1(2013)
    [25] M. G. Aartsen et al, Phys. Rev. Lett., 113: 101101(2014)
    [26] M. G. Aartsen et al, arXiv:1410.1749
    [27] A. A. Abdo et al, Phys. Rev. Lett., 104: 101101(2010)
    [28] M. Ackermann et al, arXiv:1410.3696
    [29] A. Neronov and D. Semikoz, arXiv:1412.1690
    [30] D. B. Fox, K. Kashiyama, and P. Mszars, ApJ, 774: 74(2013)
    [31] A. Neronov, D. Semikoz, and C. Tchernin, Phys. Rev. D, 89: 103002(2014)
    [32] S. Razzaque, Phys. Rev. D, 88: 081302(2013)
    [33] M. Ahlers and K. Murase, arXiv:1309.4077
    [34] M. Su, T. R. Slatyer, and D. P. Finkbeiner, ApJ, 724: 1044(2010)
    [35] N. Gupta, APh, 48: 75(2013)
    [36] J. C. Joshi, W. Winter, and N. Gupta, MNRAS, 439: 3414(2014)
    [37] Y. Q. Guo, H. B. Hu, Q. Yuan, Z. Tian, and X. J. Gao, ApJ, 795: 100(2014)
    [38] F. Aharonian et al, Nature, 439: 695(2006)
    [39] M. Ackermann et al, Science, 334: 1103(2011)
    [40] B. Bartoli, et al, ApJ, 790: 152(2014)
    [41] Y. Fujita, K. Kohri, R. Yamazaki, and K. Ioka, Phys. Rev. D, 80: 3003(2009)
    [42] A. R. Bell, MNRAS, 182: 147(1978)
    [43] A. R. Bell, MNRAS, 182: 443(1978)
    [44] R. D. Blandford and J. P. Ostriker, ApJ, 221: 29(1978)
    [45] V. S. Ptuskin and Y. M. Khazan, AZh., 58: 959(1981)
    [46] S. S. Said, A. W. Wolfendale, M. Giler, and J. Wdowczyk, ICRC, 2: 344(1981)
    [47] M. Giler, JPhG., 9: 1139(1983)
    [48] Y. Q. Guo, Z. Y. Feng, Q. Yuan, C. Liu, and H. B. Hu, NJPh., 15: 3053(2013)
    [49] Y. Q. Guo, Q. Yuan, C. Liu, and A. F. Li, JPhG., 40: 3053(2013)
    [50] E. S. Seo and V. S. Ptuskin, ApJ, 431: 705(1994)
    [51] J. Zhang, Q. Yuan, and X. J. Bi, ApJ, 720: 9(2010)
    [52] Q. Yuan et al, APh, 60: 1(2015)
    [53] S. J. Lin, Q. Yuan, and X. J. Bi, arXiv:1409.6248
    [54] D. Mauro, F. Donato, R. Lineros, and A. Vittino, JCAP, 4: 6(2014)
    [55] H. B. Jin, Y. L. Wu, and Y. F. Zhou, JCAP, 9: 49(2015)
    [56] G. Giesen, M. Boudaud, Y. Gnolini et al, JCAP, 9: 23(2015)
    [57] R. Trotta et al, ApJ, 729: 106(2011)
    [58] L. Tibaldo and I. A. Grenier arXiv:0907.0312
    [59] A. W. Strong and I. V. Moskalenko, ApJ, 509: 212(1998)
    [60] L. J. Gleeson and W. I. Axford, ApJ, 154: 1011(1968)
    [61] F. Aharonian et al, Phys. Rev. Lett., 101: 261104(2008)
    [62] J. R. Hrandel et al, APh, 21: 241(2004)
    [63] C. Consolandi et al, arXiv:1402.0467
    [64] A. D. Panov et al, astro.ph.12377(2006)
    [65] O. Adriani et al, Science, 332: 69(2011)
    [66] J. Alcaraz et al, Phys. Lett. B, 472: 215(2000)
    [67] H. S. Ahn et al, ApJ, 714: 89(2010)
    [68] T. Sanuki et al, ApJ, 545: 1135(2000)
    [69] K. Asakimori et al, ApJ, 502: 278(1998)
    [70] A. V. Apanasenko, et al, APh, 16: 13(2001)
    [71] J. R. Horandel, JPhCS, 47: 41(2006)
    [72] A. W. Strong, I. V. Moskalenko, and O. Reimer, ApJ, 537: 763(2000)
    [73] T. A. Porter and A. W. Strong, ICRC, 4: 77(2005)
    [74] S. K. Sako et al, APh, 32: 177(2009)
    [75] A. U. Abeysekara et al, APh, 50: 26(2013)
    [76] O. Macias and C. Gordon, Phys. Rev. D, 89: 063515(2014)
    [77] S. D. Hunter et al, ApJ, 481: 205(1997)
    [78] G. Di Sciascio and IJMPD, 23: 1430019(2014)
    [79] O. Adriani et al, Phys. Rev. Lett., 105: 121101(2010)
    [80] O. Adriani et al, Physics Reports, 544: 323(2014)
    [81] F. Donato et al, ApJ, 563: 172(2001)
    [82] F. Donato et al, Phys. Rev. Lett., 102: 071301(2009)
    [83] S. Orito et al, Phys. Rev. Lett., 84: 1078(2000)
    [84] Y. Asaoka et al, Phys. Rev. Lett., 88: 051101(2002)
    [85] M. Boezio et al, 487: 415(1997)
    [86] M. Boezio, ApJ, 561: 787(2001)
    [87] A. S. Beach et al, Phys. Rev. Lett., 87: 271101(2001)
    [88] M. Aguilar, CERN Courier, 53: 8(2013)
    [89] O. Adriani et al, ApJ, 791: 93(2014)
    [90] V. A. Derbina et al, ApJ, 628: 41(2005)
    [91] E. Juliusson, ApJ, 191: 331(1974)
    [92] R. Dwyer, ApJ, 224: 691(1978)
    [93] C. D. Orth, A. Buffington, G. F. Smoot, and T. S. Mast, ApJ, 226: 1147(1978)
    [94] T. Simon, J. L. Linsky, and III F. H. Schiffer, ApJ, 239: 911(1980)
    [95] J. J. Engelmann et al, AA, 233: 96(1990)
    [96] R. C. Maehl, J. F. Ormes, A. J. Fisher, and F. A. Hagen, ApSS, 47: 163(1977)
    [97] A. Lukasiak, ICRC, 3: 41(1999)
    [98] M. A. Duvernois, J. A. Simpson, and M. R. Thayer, AA, 316: 555(1996)
    [99] A. J. Davis et al, AIPC, 528: 421(2000)
    [100] S. A. Stephens and R. E. Streitmatter, ApJ, 505: 266(1998)
    [101] M. Aguilar et al, Phys. Rev. Lett., 113: 121102(2014)
    [102] J. Alcaraz et al, Phys. Lett. B, 484: 10(2000)
    [103] O. Adriani et al, Phys. Rev. Lett., 106: 201101(2011)
    [104] S. W. Barwick et al, ApJ, 498: 779(1998)
    [105] M. Boezio et al, ApJ, 532: 653
    [106] J. Chang et al, Nature, 456: 362(2008)
    [107] M. Ackermann et al, Phys. Rev. D, 82: 092004(2010)
    [108] S. Torii et al, ApJ, 559: 973(2001)
    [109] M. Aguilar et al, Phys. Lett. B, 646: 145(2007)
    [110] S. W. Barwick et al, ApJ, 482: 191(1997)
    [111] S. Coutu et al, ICRC, 5: 1687(2001)
    [112] G. Giesen et al, arXiv:1504.04276
    [113] N. Tomassetti, ApJ, 752: 13(2012)
    [114] C. Evoli, D. Gaggero, D. Grasso, and L. Maccione, JCAP, 10: 18(2008)
    [115] D. Gaggero, L. Maccione, G. Di Bernardo, C. Evoli, and D. Grasso, Phys. Rev. Lett., 111: 021102(2013)
    [116] C. Jin, Y. Q. Guo and H. B. Hu, arXiv:1504.06903
  • 加载中

Get Citation
Yi-Qing Guo, Hong-Bo Hu and Zhen Tian. On the contribution of a hard galactic plane component to the excesses of secondary particles[J]. Chinese Physics C, 2016, 40(11): 115001. doi: 10.1088/1674-1137/40/11/115001
Yi-Qing Guo, Hong-Bo Hu and Zhen Tian. On the contribution of a hard galactic plane component to the excesses of secondary particles[J]. Chinese Physics C, 2016, 40(11): 115001.  doi: 10.1088/1674-1137/40/11/115001 shu
Milestone
Received: 2015-09-17
Revised: 2016-07-28
Fund

    Natural Sciences Foundation of China (11135010)

Article Metric

Article Views(1392)
PDF Downloads(121)
Cited by(0)
Policy on re-use
To reuse of subscription content published by CPC, the users need to request permission from CPC, unless the content was published under an Open Access license which automatically permits that type of reuse.
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Email This Article

Title:
Email:

On the contribution of a hard galactic plane component to the excesses of secondary particles

  • 1. Key Laboratory of Particle Astrophysics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
Fund Project:  Natural Sciences Foundation of China (11135010)

Abstract: The standard model of cosmic ray propagation has been very successful in explaining all kinds of galactic cosmic ray spectra. However, high precision measurement have recently revealed an appreciable discrepancy between data and model expectations, from spectrum observations of gamma-rays, e+/e- and probably the B=C ratio starting from ~10 GeV energy . In this work, we propose that a hard galactic plane component, supplied by the fresh cosmic ray sources and detained by local magnetic elds, can contribute additional secondary particles interacting with local materials. By properly choosing the intensity and spectral index of the harder component up to multi-T eV energy , a two-component gamma-ray spectrum is obtained and agrees very well with the observation. Simultaneously , the expected neutrino numbers from the galactic plane could contribute ~60% of IceCube observed neutrino number below a few hundreds of TeV under our model. In addition to these studies, we nd that the same pp-collision process responsible for the excess gamma ray emission could account for a signi cant amount of the positron excess, but a more detailed mechanism is needed for a full agreement. It is expected that the excesses in the p=p and B=C ratio will show up when energy is above ~10 GeV. We look forward this model being tested in the near future by new observations from AMS02, IceCube, AS-gamma, HA WC and future  experiments such as LHASSO, HiSCORE and CTA.

    HTML

Reference (116)

目录

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return