Role of the intrinsic charm content of the nucleon from various light-cone models on γ+c-jet production

  • Having a precise knowledge of the charm quark component can lead to a better understanding of the fundamental structure of the nucleon. Furthermore, the charm quark distribution function plays an important role in the study of many processes which are sensitive to the charm quark content of the nucleon. In the standard global analysis of parton distribution functions (PDFs), the charm quark distribution arises perturbatively through the splitting of the gluon int→charm-anticharm pairs in the DGLAP evolution equations. Nevertheless, the existence of nonperturbative intrinsic charm quarks in the proton has also been predicted by QCD. In this paper, we study some phenomenological models within the light-cone framework to predict the nonperturbative intrinsic charm quark content of the nucleon. We investigate the impact of these models on the prediction of γ+c-jet production in pp collisions at the LHC and compare our results on pp→γ+c-jet with the experimental data of D0.
      PCAS:
  • 加载中
  • [1] B. Bailey, E. L. Berger, and L. E. Gordon, Phys. Rev. D, 54:1896(1996)[arXiv:9602373[hep-ph]]
    [2] T. P. Stavreva and J. F. Owens, Phys. Rev. D, 79:054017(2009)[arXiv:0901.3791[hep-ph]]
    [3] T. Stavreva, I. Schienbein, F. Arleo, K. Kovarik, F. Olness, J. Y. Yu, and J. F. Owens, JHEP, 1101:152(2011)[arXiv:1012.1178[hep-ph]]
    [4] H. B. Hartanto, FERMILAB-THESIS-2013-37
    [5] T. Stavreva, F. Arleo, and I. Schienbein, JHEP, 1302:072(2013)[arXiv:1211.6744[hep-ph]]
    [6] V. M. Abazov et al (D0 Collaboration), Phys. Rev. Lett., 102:192002(2009)[arXiv:0901.0739[hep-ex]]
    [7] V. M. Abazov et al (D0 Collaboration), Phys. Lett. B, 719:354(2013)[arXiv:1210.5033[hep-ex]]
    [8] T. Aaltonen et al (CDF Collaboration), Phys. Rev. Lett., 111:042003(2013)[arXiv:1303.6136[hep-ex]]
    [9] L. A. Harland-Lang, A. D. Martin, P. Motylinski, and R. S. Thorne, Eur. Phys. J. C, 75:204(2015)[arXiv:1412.3989[hep-ph]]
    [10] S. Dulat et al, Phys. Rev. D, 93:033006(2016)[arXiv:1506.07443[hep-ph]]
    [11] R. D. Ball et al (NNPDF Collaboration), JHEP, 1504:040(2015)[arXiv:1410.8849[hep-ph]]
    [12] S. Alekhin, J. Bluemlein, and S. Moch, Phys. Rev. D, 89:054028(2014)[arXiv:1310.3059[hep-ph]]
    [13] P. Jimenez-Delgado and E. Reya, Phys. Rev. D, 89:074049(2014)[arXiv:1403.1852[hep-ph]]
    [14] H. Abramowicz et al (H1 and ZEUS Collaborations), Eur. Phys. J. C, 75:580(2015)[arXiv:1506.06042[hep-ex]]
    [15] A. Accardi, L. T. Brady, W. Melnitchouk, J. F. Owens, and N. Sato, Phys. Rev. D, 93:114017(2016)[arXiv:1602.03154[hep-ph]]
    [16] H. Khanpour, A. N. Khorramian, and S. A. Tehrani, J. Phys. G, 40:045002(2013)[arXiv:1205.5194[hep-ph]]
    [17] V. N. Gribov and L. N. Lipatov, Sov. J. Nucl. Phys., 15:438(1972); G. Altarelli and G. Parisi, Nucl. Phys. B, 126:298(1997); Yu. L. Dokshitzer, Sov. Phys. JETP, 46:641(1977)
    [18] J. J. Aubert et al (European Muon Collaboration), Nucl. Phys. B, 213:31(1983)
    [19] S. J. Brodsky, P. Hoyer, C. Peterson, and N. Sakai, Phys. Lett. B, 93:451(1980); S.J. Brodsky, C. Peterson, and N. Sakai, Phys. Rev. D, 23:2745(1981)
    [20] D. Drijard et al (CERN-College de France-Heidelberg-Karlsruhe Collaboration), Phys. Lett. B, 81:250(1979)
    [21] K. L. Giboni et al, Phys. Lett. B, 85:437(1979)
    [22] W. S. Lockman, T. Meyer, J. Rander, P. Schlein, R. Webb, S. Erhan, and J. Zsembery, Phys. Lett. B, 85:443(1979)
    [23] D. Drijard et al (ACCDHW Collaboration), Phys. Lett. B, 85:452(1979)
    [24] A. W. Thomas, Phys. Lett. B, 126:97(1983)
    [25] W. Melnitchouk and A. W. Thomas, Phys. Rev. D, 47:3794(1993)
    [26] S. J. Brodsky and B. Q. Ma, Phys. Lett. B, 381:317(1996)
    [27] H. Holtmann, A. Szczurek, and J. Speth, Nucl. Phys. A, 596:631(1996)[arXiv:9601388[hep-ph]]
    [28] S. Kumano, Phys. Rept.,\/303:183(1998)
    [29] G. T. Garvey and J. C. Peng, Prog. Part. Nucl. Phys., 47:203(2001)
    [30] F. G. Cao and A. I. Signal, Phys. Lett. B, 559:229(2003)
    [31] M. Traini, Phys. Rev. D, 89:034021(2014)[arXiv:1309.5814[hep-ph]]
    [32] A. Vega, I. Schmidt, T. Gutsche, and V. E. Lyubovitskij, Phys. Rev. D, 93:056001(2016)
    [33] E. Hoffmann and R. Moore, Z. Phys. C, 20:71(1983)
    [34] B. W. Harris, J. Smith, and R. Vogt, Nucl. Phys. B, 461:181(1996)[arXiv:9508403[hep-ph]]
    [35] J. Pumplin, H. L. Lai, and W. K. Tung, Phys. Rev. D, 75:054029(2007)[arXiv:0701220[hep-ph]]
    [36] P. M. Nadolsky, H. L. Lai, Q. H. Cao, J. Huston, J. Pumplin, D. Stump, W. K. Tung, and C.-P. Yuan, Phys. Rev. D, 78:013004(2008)[arXiv:0802.0007[hep-ph]]
    [37] S. Dulat, T. J. Hou, J. Gao, J. Huston, J. Pumplin, C. Schmidt, D. Stump, and C.-P. Yuan, Phys. Rev. D, 89:073004(2014)[arXiv:1309.0025[hep-ph]]
    [38] P. Jimenez-Delgado, T. J. Hobbs, J. T. Londergan, and W. Melnitchouk, Phys. Rev. Lett., 114:082002(2015)[arXiv:1408.1708[hep-ph]]
    [39] S. J. Brodsky and S. Gardner, Phys. Rev. Lett., 116:019101(2016)[arXiv:1504.00969[hep-ph]]
    [40] R. D. Ball et al (NNPDF Collaboration), arXiv:1605.06515[hep-ph]
    [41] W. C. Chang and J. C. Peng, Phys. Rev. Lett., 106:252002(2011).
    [42] W. C. Chang and J. C. Peng, Phys. Lett. B, 704:197(2011)[arXiv:1105.2381[hep-ph]]
    [43] W. C. Chang and J. C. Peng, Phys. Rev. D, 92:054020(2015)[arXiv:1410.7027[hep-ph]]
    [44] V. A. Bednyakov, M. A. Demichev, G. I. Lykasov, T. Stavreva, and M. Stockton, Phys. Lett. B, 728:602(2014)[arXiv:1305.3548[hep-ph]]
    [45] S. Rostami, A. Khorramian, A. Aleedaneshvar, and M. Goharipour, J. Phys. G, 43:055001(2016)[arXiv:1510.08421[hep-ph]]
    [46] F. Lyonnet, A. Kusina, T. Jeo, K. Kovark, F. Olness, I. Schienbein, and J. Y. Yu, JHEP, 1507:141(2015)[arXiv:1504.05156[hep-ph]]
    [47] P. H. Beauchemin, V. A. Bednyakov, G. I. Lykasov, and Y. Y. Stepanenko, Phys. Rev. D, 92:034014(2015)[arXiv:1410.2616[hep-ph]]
    [48] T. Boettcher, P. Ilten, and M. Williams, Phys. Rev. D, 93:074008(2016)[arXiv:1512.06666[hep-ph]]
    [49] A. V. Lipatov, G. I. Lykasov, Y. Y. Stepanenko, and V. A. Bednyakov, arXiv:1606.04882[hep-ph]
    [50] S. Duan, C. S. An, and B. Saghai, Phys. Rev. D, 93:114006(2016)[arXiv:1606.02000[hep-ph]]
    [51] J. Pumplin, Phys. Rev. D, 73:114015(2006)[arXiv:0508184[hep-ph]]
    [52] T. J. Hobbs, J. T. Londergan, and W. Melnitchouk, Phys. Rev. D, 89:074008(2014)[arXiv:1311.1578[hep-ph]]
    [53] M. Salajegheh, Phys. Rev. D, 92:074033(2015)
    [54] R. D. Ball, V. Bertone, M. Bonvini, S. Forte, P. Groth Merrild, J. Rojo, and L. Rottoli, Phys. Lett. B, 754:49(2016)[arXiv:1510.00009[hep-ph]]
    [55] R. Laha and S. J. Brodsky, arXiv:1607.08240[hep-ph]
    [56] W. C. Chang and J. C. Peng, Prog. Part. Nucl. Phys., 79:95(2014)
    [57] S. J. Brodsky, A. Kusina, F. Lyonnet, I. Schienbein, H. Spiesberger, and R. Vogt, Adv. High Energy Phys., 2015:231547(2015)[arXiv:1504.06287[hep-ph]]
    [58] S. J. Brodsky, hep-ph/0412101
    [59] J. F. Donoghue and E. Golowich, Phys. Rev. D, 15:3421(1977)
    [60] J. Badier et al (NA3 Collaboration), Z. Phys. C, 20:101(1983)
    [61] P. Chauvat et al (R608 Collaboration), Phys. Lett. B, 199:304(1987)
    [62] M. J. Leitch et al (NuSea Collaboration), Phys. Rev. Lett., 84:3256(2000)[nucl-ex/9909007]
    [63] E. M. Aitala et al (E791 Collaboration), Phys. Lett. B, 495:42(2000)[hep-ex/0008029]
    [64] E. M. Aitala et al (E791 Collaboration), Phys. Lett. B, 539:218(2002)[hep-ex/0205099]
    [65] V. M. Abazov et al (D0 Collaboration), Phys. Rev. Lett., 112:042001(2014)[arXiv:1308.4384[hep-ex]]
    [66] G. P. Lepage and S. J. Brodsky, Phys. Lett. B, 87:359(1979)
    [67] G. P. Lepage and S. J. Brodsky, Phys. Rev. D, 22:2157(1980)
    [68] T. Aaltonen et al (CDF Collaboration), Phys. Rev. D, 81:052006(2010)[arXiv:0912.3453[hep-ex]]
    [69] V. M. Abazov et al (D0 Collaboration), Phys. Lett. B, 714:32(2012)[arXiv:1203.5865[hep-ex]]
    [70] J. Alwall, M. Herquet, F. Maltoni, O. Mattelaer, and T. Stelzer, JHEP, 1106:128(2011)[arXiv:1106.0522[hep-ph]]
    [71] D. Bourilkov, R. C. Group, and M. R. Whalley, hep-ph/0605240
    [72] M. Botje, Comput. Phys. Commun., 182:490(2011)[arXiv:1005.1481[hep-ph]]
    [73] A. Kusina, K. Kovaik, T. Jeo, D. B. Clark, F. I. Olness, I. Schienbein, and J. Y. Yu, PoS DIS, 2014:047(2014)[arXiv:1408.1114[hep-ph]]
  • 加载中

Get Citation
S. Rostami, Muhammad Goharipour and Alireza Aleedaneshvar. Role of the intrinsic charm content of the nucleon from various light-cone models on γ+c-jet production[J]. Chinese Physics C, 2016, 40(12): 123104. doi: 10.1088/1674-1137/40/12/123104
S. Rostami, Muhammad Goharipour and Alireza Aleedaneshvar. Role of the intrinsic charm content of the nucleon from various light-cone models on γ+c-jet production[J]. Chinese Physics C, 2016, 40(12): 123104.  doi: 10.1088/1674-1137/40/12/123104 shu
Milestone
Received: 2016-06-24
Revised: 2016-08-01
Article Metric

Article Views(1806)
PDF Downloads(98)
Cited by(0)
Policy on re-use
To reuse of subscription content published by CPC, the users need to request permission from CPC, unless the content was published under an Open Access license which automatically permits that type of reuse.
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Email This Article

Title:
Email:

Role of the intrinsic charm content of the nucleon from various light-cone models on γ+c-jet production

Abstract: Having a precise knowledge of the charm quark component can lead to a better understanding of the fundamental structure of the nucleon. Furthermore, the charm quark distribution function plays an important role in the study of many processes which are sensitive to the charm quark content of the nucleon. In the standard global analysis of parton distribution functions (PDFs), the charm quark distribution arises perturbatively through the splitting of the gluon int→charm-anticharm pairs in the DGLAP evolution equations. Nevertheless, the existence of nonperturbative intrinsic charm quarks in the proton has also been predicted by QCD. In this paper, we study some phenomenological models within the light-cone framework to predict the nonperturbative intrinsic charm quark content of the nucleon. We investigate the impact of these models on the prediction of γ+c-jet production in pp collisions at the LHC and compare our results on pp→γ+c-jet with the experimental data of D0.

    HTML

Reference (73)

目录

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return