Chiral extrapolation of nucleon axial charge gA in effective field theory

  • The extrapolation of nucleon axial charge gA is investigated within the framework of heavy baryon chiral effective field theory. The intermediate octet and decuplet baryons are included in the one loop calculation. Finite range regularization is applied to improve the convergence in the quark-mass expansion. The lattice data from three different groups are used for the extrapolation. At physical pion mass, the extrapolated gA are all smaller than the experimental value.
  • [1] J. Beringer et al (Particle Data Group Collaboration), Phys. Rev. D, 86:010001(2012)
    [2] S. D. Bass and A. W. Thomas, Phys. Lett. B, 684:216(2010)
    [3] X. Y. Liu, K. Khosonthongkee, A. Limphirat et al, Phys. Rev. D, 91:034022(2015)
    [4] S. Boffi, L. Y. Glozman, W. Klink et al, Eur. Phys. J. A, 14:17(2002)
    [5] N. Yamanaka, S. Imai, T. M. Doi et al, Phys. Rev. D, 89:074017(2014)
    [6] V. Bernard, Prog. Part. Nucl. Phys., 60:82(2008)
    [7] J. D. Bratt et al (LHPC Collaboration), Phys. Rev. D, 82:094502(2010)
    [8] C. Alexandrou et al (ETM Collaboration), Phys. Rev. D, 83:045010(2011)
    [9] S. Capitani, M. Della Morte, G. von Hippel et al, Phys. Rev. D, 86:074502(2012)
    [10] R. G. Edwards et al (LHPC Collaboration), Phys. Rev. Lett., 96:052001(2006)
    [11] S. Ohta (RBC and UKQCD Collaborations), PoS LATTICE, 2013:274(2014)
    [12] T. Yamazaki et al (RBC+UKQCD Collaboration), Phys. Rev. Lett., 100:171602(2008)
    [13] R. D. Young, D. B. Leinweber, and A. W. Thomas, Prog. Part. Nucl. Phys., 50:399(2003)
    [14] D. B. Leinweber, A. W. Thomas, and R. D. Young, Phys. Rev. Lett., 92:242002(2004)
    [15] P. Wang, D. B. Leinweber, A. W. Thomas et al, Phys. Rev. D, 75:073012(2007)
    [16] P. Wang and A. W. Thomas, Phys. Rev. D, 81:114015(2010)
    [17] C. R. Allton, W. Armour, D. B. Leinweber et al, Phys. Lett. B, 628:125(2005)
    [18] W. Armour, C. R. Allton, D. B. Leinweber et al, Nucl. Phys. A, 840:97(2010)
    [19] J. M. M. Hall, D. B. Leinweber, and R. D. Young, Phys. Rev. D, 88:014504(2013)
    [20] D. B. Leinweber et al, Phys. Rev. Lett., 94:212001(2005)
    [21] P. Wang, D. B. Leinweber, A. W. Thomas et al, Phys. Rev. C, 79:065202(2009)
    [22] P. Wang, D. B. Leinweber, A. W. Thomas et al, Phys. Rev. D, 79:094001(2009)
    [23] P. Wang, D. B. Leinweber, A. W. Thomas et al, Phys. Rev. D, 86:094038(2012)
    [24] P. Wang, D. B. Leinweber, and A. W. Thomas, Phys. Rev. D, 89:033008(2014)
    [25] J. M. M. Hall, D. B. Leinweber and R. D. Young, Phys. Rev. D, 89:054511(2014)
    [26] P. Wang, D. B. Leinweber, and A. W. Thomas, Phys. Rev. D, 92:034508(2015)
    [27] H. Li, P. Wang, D. B. Leinweber et al, Phys. Rev. C, 93:045203(2016)
    [28] H. Hogaasen and F. Myhrer, Phys. Rev. D, 37:1950(1988)
    [29] E. E. Jenkins, M. E. Luke, A. V. Manohar et al, Phys. Lett. B, 302:482(1993); 388:866(1996)
  • [1] J. Beringer et al (Particle Data Group Collaboration), Phys. Rev. D, 86:010001(2012)
    [2] S. D. Bass and A. W. Thomas, Phys. Lett. B, 684:216(2010)
    [3] X. Y. Liu, K. Khosonthongkee, A. Limphirat et al, Phys. Rev. D, 91:034022(2015)
    [4] S. Boffi, L. Y. Glozman, W. Klink et al, Eur. Phys. J. A, 14:17(2002)
    [5] N. Yamanaka, S. Imai, T. M. Doi et al, Phys. Rev. D, 89:074017(2014)
    [6] V. Bernard, Prog. Part. Nucl. Phys., 60:82(2008)
    [7] J. D. Bratt et al (LHPC Collaboration), Phys. Rev. D, 82:094502(2010)
    [8] C. Alexandrou et al (ETM Collaboration), Phys. Rev. D, 83:045010(2011)
    [9] S. Capitani, M. Della Morte, G. von Hippel et al, Phys. Rev. D, 86:074502(2012)
    [10] R. G. Edwards et al (LHPC Collaboration), Phys. Rev. Lett., 96:052001(2006)
    [11] S. Ohta (RBC and UKQCD Collaborations), PoS LATTICE, 2013:274(2014)
    [12] T. Yamazaki et al (RBC+UKQCD Collaboration), Phys. Rev. Lett., 100:171602(2008)
    [13] R. D. Young, D. B. Leinweber, and A. W. Thomas, Prog. Part. Nucl. Phys., 50:399(2003)
    [14] D. B. Leinweber, A. W. Thomas, and R. D. Young, Phys. Rev. Lett., 92:242002(2004)
    [15] P. Wang, D. B. Leinweber, A. W. Thomas et al, Phys. Rev. D, 75:073012(2007)
    [16] P. Wang and A. W. Thomas, Phys. Rev. D, 81:114015(2010)
    [17] C. R. Allton, W. Armour, D. B. Leinweber et al, Phys. Lett. B, 628:125(2005)
    [18] W. Armour, C. R. Allton, D. B. Leinweber et al, Nucl. Phys. A, 840:97(2010)
    [19] J. M. M. Hall, D. B. Leinweber, and R. D. Young, Phys. Rev. D, 88:014504(2013)
    [20] D. B. Leinweber et al, Phys. Rev. Lett., 94:212001(2005)
    [21] P. Wang, D. B. Leinweber, A. W. Thomas et al, Phys. Rev. C, 79:065202(2009)
    [22] P. Wang, D. B. Leinweber, A. W. Thomas et al, Phys. Rev. D, 79:094001(2009)
    [23] P. Wang, D. B. Leinweber, A. W. Thomas et al, Phys. Rev. D, 86:094038(2012)
    [24] P. Wang, D. B. Leinweber, and A. W. Thomas, Phys. Rev. D, 89:033008(2014)
    [25] J. M. M. Hall, D. B. Leinweber and R. D. Young, Phys. Rev. D, 89:054511(2014)
    [26] P. Wang, D. B. Leinweber, and A. W. Thomas, Phys. Rev. D, 92:034508(2015)
    [27] H. Li, P. Wang, D. B. Leinweber et al, Phys. Rev. C, 93:045203(2016)
    [28] H. Hogaasen and F. Myhrer, Phys. Rev. D, 37:1950(1988)
    [29] E. E. Jenkins, M. E. Luke, A. V. Manohar et al, Phys. Lett. B, 302:482(1993); 388:866(1996)
  • 加载中

Cited by

1. Yang, M., Wang, P. Electromagnetic form factors of octet baryons with the nonlocal chiral effective theory[J]. Physical Review D, 2020, 102(5): 056024. doi: 10.1103/PhysRevD.102.056024
2. Yang, M.-Y., Wang, P. Sea quark contributions to nucleon electromagnetic form factors with the nonlocal chiral effective Lagrangian[J]. Chinese Physics C, 2020, 44(5): 053101. doi: 10.1088/1674-1137/44/5/053101
3. He, F., Wang, P. Pauli form factors of electron and muon in nonlocal quantum electrodynamics[J]. European Physical Journal Plus, 2020, 135(2): 156. doi: 10.1140/epjp/s13360-020-00151-y
4. He, F., Wang, P. Strange form factors of the nucleon with a nonlocal chiral effective Lagrangian[J]. Physical Review D, 2018, 98(3): 036007. doi: 10.1103/PhysRevD.98.036007
5. He, F., Wang, P. Nucleon electromagnetic form factors with a nonlocal chiral effective Lagrangian[J]. Physical Review D, 2018, 97(3): 036007. doi: 10.1103/PhysRevD.97.036007
Get Citation
Hong-na Li and P. Wang. Chiral extrapolation of nucleon axial charge gA in effective field theory[J]. Chinese Physics C, 2016, 40(12): 123106. doi: 10.1088/1674-1137/40/12/123106
Hong-na Li and P. Wang. Chiral extrapolation of nucleon axial charge gA in effective field theory[J]. Chinese Physics C, 2016, 40(12): 123106.  doi: 10.1088/1674-1137/40/12/123106 shu
Milestone
Received: 2016-08-17
Fund

    Supported by National Natural Science Foundation of China (11475186) and Sino-German CRC 110 (NSFC 11621131001)

Article Metric

Article Views(1912)
PDF Downloads(72)
Cited by(5)
Policy on re-use
To reuse of Open Access content published by CPC, for content published under the terms of the Creative Commons Attribution 3.0 license (“CC CY”), the users don’t need to request permission to copy, distribute and display the final published version of the article and to create derivative works, subject to appropriate attribution.
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Email This Article

Title:
Email:

Chiral extrapolation of nucleon axial charge gA in effective field theory

    Corresponding author: Hong-na Li, lihongna@ihep.ac.cn
    Corresponding author: P. Wang, lihongna@ihep.ac.cn
  • 1. Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
  • 2. College of Physics, Jilin University, Changchun, Jilin 130012, China
  • 3. Theoretical Physics Center for Science Facilities, Chinese Academy of Sciences, Beijing 100049, China
Fund Project:  Supported by National Natural Science Foundation of China (11475186) and Sino-German CRC 110 (NSFC 11621131001)

Abstract: The extrapolation of nucleon axial charge gA is investigated within the framework of heavy baryon chiral effective field theory. The intermediate octet and decuplet baryons are included in the one loop calculation. Finite range regularization is applied to improve the convergence in the quark-mass expansion. The lattice data from three different groups are used for the extrapolation. At physical pion mass, the extrapolated gA are all smaller than the experimental value.

    HTML

Reference (29)

目录

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return