Evolution of N=28 shell closure in relativistic continuum Hartree-Bogoliubov theory

  • The N=28 shell gap in sulfur, argon, calcium and titanium isotopes is investigated in the framework of relativistic continuum Hartree-Bogoliubov (RCHB) theory. The evolutions of neutron shell gap, separation energy, single particle energy and pairing energy are analyzed, and it is found that the N=28 shell gap is quenched in sulfur isotopes but persists in argon, calcium and titanium isotopes. The evolution of the N=28 shell gap in the N=28 isotonic chain is discussed, and the erosion of the N=28 shell gap is understood with the evolution of potential with proton number.
      PCAS:
  • 加载中
  • [1] O. Haxel, J. H. D. Jensen and H. E. Suess, Phys. Rev., 75:1766(1949)
    [2] M. G. Mayer, Phys. Rev., 75:1969(1949)
    [3] I. Tanihata, H. Hamagaki, O. Hashimoto et al, Phys. Rev. Lett., 55:2676(1985)
    [4] A. Navin, D. W. Anthony, T. Aumann et al, Phys. Rev. Lett., 85:266(2000)
    [5] H. Iwasaki, T. Motobayashi, H. Akiyoshi et al, Phys. Lett. B, 491:8(2000)
    [6] D. Guillemaud-Mueller, C. Detraz, M. Langevin et al, Nucl. Phys. A, 426:37(1984)
    [7] T. Motobayashi, Y. Ikeda, K. Ieki et al, Phys. Lett. B, 346:9(1995)
    [8] O. Sorlin, D. Guillemaud-Mueller, A. C. Mueller et al, Phys. Rev. C, 47:2941(1993)
    [9] T. Glasmacher, B. A. Brown, M. J. Chromik et al, Phys. Lett. B, 395:163(1997)
    [10] F. Sarazin, H. Savajols, W. Mittig et al, Phys. Rev. Lett., 84:5062(2000)
    [11] B. Bastin, S. Grvy, D. Sohler et al, Phys. Rev. Lett., 99:022503(2007)
    [12] A. Ozawa, T. Kobayashi, T. Suzuki et al, Phys. Rev. Lett., 84:5493(2000)
    [13] D. Steppenbeck, S. Takeuchi, N. Aoi et al, Nature, 502:207(2013)
    [14] J. Dobaczewski, I. Hamamoto, W. Nazarewicz et al, Phys. Rev. Lett., 72:981(1994)
    [15] C. M. Campbell, N. Aoi, D. Bazin et al, Phys. Rev. Lett., 97:112501(2006)
    [16] S. Takeuchi, M. Matsushita, N. Aoi et al, Phys. Rev. Lett., 109:182501(2012)
    [17] S. R. Stroberg, A. Gade, J. A. Tostevin et al, Phys. Rev. C, 90:034301(2014)
    [18] L. Gaudefroy, J. M. Daugas, M. Hass et al, Phys. Rev. Lett., 102:092501(2009)
    [19] C. Force, S. Grvy, L. Gaudefroy et al, Phys. Rev. Lett., 105:102501(2010)
    [20] D. Santiago-Gonzalez, I. Wiedenhver, V. Abramkina et al, Phys. Rev. C, 83:061305(2011)
    [21] S. Grvy, J. Mrazek, J. C. Angelique et al, Nucl. Phys. A, 722:C424(2003)
    [22] S. Bhattacharyya, M. Rejmund, A. Navin et al, Phys. Rev. Lett., 101:032501(2008)
    [23] A. Gade, P. Adrich, D. Bazin et al, Phys. Rev. Lett., 102:182502(2009)
    [24] H. Scheit, T. Glasmacher, B. A. Brown et al, Phys. Rev. Lett., 77:3967(1996)
    [25] A. Gade, D. Bazin, C. A. Bertulani et al, Phys. Rev. C, 71:051301(2005)
    [26] L. Gaudefroy, O. Sorlin, D. Beaumel et al, Phys. Rev. Lett., 97:092501(2006)
    [27] L. Gaudefroy, O. Sorlin, F. Nowacki et al, Phys. Rev. C, 78:034307(2008)
    [28] D. Mengoni, J. J. Valiente-Dobn, A. Gadea et al, Phys. Rev. C, 82:024308(2010)
    [29] Z. Meisel, S. George, S. Ahn et al, Phys. Rev. Lett., 114:022501(2015)
    [30] J. Retamosa, E. Caurier, F. Nowacki et al, Phys. Rev. C, 55:1266(1997)
    [31] D. J. Dean, M. T. Ressell, M. Hjorth-Jensen et al, Phys. Rev. C, 59:2474(1999)
    [32] E. Caurier, F. Nowacki, and A. Poves, Eur. Phys. J. A, 15:145(2002)
    [33] E. Caurier, F. Nowacki, and A. Poves, Nucl. Phys. A, 742:14(2004)
    [34] E. Caurier, G. Martnez-Pinedo, F. Nowacki et al, Rev. Mod. Phys.,77:427(2005)
    [35] F. Nowacki and A. Poves, Phys. Rev. C, 79:014310(2009)
    [36] L. Gaudefroy, Phys. Rev. C, 81:064329(2010)
    [37] E. Caurier, F. Nowacki, and A. Poves, Phys. Rev. C, 90:014302(2014)
    [38] T. R. Werner, J. A. Sheikh et al, Nucl. Phys. A, 597:327(1996)
    [39] D. Hirata, K. Sumiyoshi, B. V. Carlson et al, Nucl. Phys. A, 609:131(1996)
    [40] G. A. Lalazissis, D. Vretenar, P. Ring et al, Phys. Rev. C, 60:014310(1999)
    [41] B. V. Carlson and D. Hirata, Phys. Rev. C, 62:054310(2000)
    [42] S. Peru, M. Girod, and J. F. Berger, Eur. Phys. J. A, 9:35(2000)
    [43] R. Rodrguez-Guzmn, J. L. Egido, and L. M. Robledo, Phys. Rev. C, 65:024304(2002)
    [44] M. Moreno-Torres, M. Grasso, H. Z. Liang et al, Phys. Rev. C, 81:064327(2010)
    [45] T. R. Rodrguez and J. L. Egido, Phys. Rev. C, 84:051307(2011)
    [46] Z. P. Li, J. M. Yao, D. Vretenar et al, Phys. Rev. C, 84:054304(2011)
    [47] Y. Z. Wang, J. Z. Gu, J. M. Dong et al, Phys. Rev. C, 83:054305(2011)
    [48] Y. Z. Wang, J. Z. Gu, G. L. Yu et al, Chin. Phys. Lett., 31:102102(2014)
    [49] J. Dobaczewski, H. Flocard, and J. Treiner, Nucl. Phys. A, 422:103(1984)
    [50] J. Dobaczewski, W. Nazarewicz, T. R. Werner et al, Phys. Rev. C, 53:2809(1996)
    [51] J. Meng and P. Ring, Phys. Rev. Lett., 77:3963(1996)
    [52] J. Meng, Nucl. Phys. A, 635:3(1998)
    [53] J. Meng, H. Toki, S.G. Zhou et al, Prog. Part. Nucl. Phys., 57:470(2006)
    [54] J. Meng and S.G. Zhou, J. Phys. G:Nucl. Part. Phys., 42:093101(2015)
    [55] J. Meng and P. Ring, Phys. Rev. Lett., 80:460(1998)
    [56] J. Meng, H. Toki, J. Y. Zeng et al, Phys. Rev. C, 65:041302(2002)
    [57] W. Zhang, J. Meng, S. Q. Zhang et al, Nucl. Phys. A, 753:106(2005)
    [58] J. Meng, I. Tanihata, and S. Yamaji, Phys. Lett. B, 419:1(1998)
    [59] J. Meng, S.G. Zhou, and I. Tanihata, Phys. Lett. B, 532:209(2002)
    [60] S.G. Zhou, J. Meng, P. Ring et al, Phys. Rev. C, 82:011301(2010)
    [61] L. L. Li, J. Meng, P. Ring et al, Phys. Rev. C, 85:024312(2012)
    [62] Y. Chen, L. L. Li, H. Z. Liang et al, Phys. Rev. C, 85:067301(2012)
    [63] H. Kucharek and P. Ring, Z. Phys. A, 339:23(1991)
    [64] P. W. Zhao, Z. P. Li, J. M. Yao et al, Phys. Rev. C, 82:054319(2010)
    [65] P. W. Zhao, L. S. Song, B. Sun et al, Phys. Rev. C, 86:064324(2012)
    [66] X. M. Hua, T. H. Heng, Z. M. Niu et al, Sci. China Phys. Mech. Astron., 55:2414(2012)
    [67] X. Y. Qu, Y. Chen, S. Q. Zhang et al, Sci. China Phys. Mech. Astron., 56:2031(2013)
    [68] Q.-S. Zhang, Z. M. Niu, Z. P. Li et al, Front. Phys., 9:529(2014)
    [69] K. Q. Lu, Z. X. Li, Z. P. Li et al, Phys. Rev. C, 91:027304(2015)
    [70] A. V. Afanasjev, S. E. Agbemava, D. Ray et al, Phys. Rev. C, 91:014324(2015)
    [71] J. M. Yao, H. Mei, and Z. P. Li, Phys. Lett. B, 723:459(2013)
    [72] J. M. Yao, K. Hagino, Z. P. Li et al, Phys. Rev. C, 89:054306(2014)
    [73] X. Y. Wu, J. M. Yao, and Z. P. Li, Phys. Rev. C, 89:017304(2014)
    [74] Z. P. Li, C. Y. Li, J. Xiang et al, Phys. Lett. B, 717:470(2012)
    [75] Y. Fu, H. Mei, J. Xiang et al, Phys. Rev. C, 87:054305(2013)
    [76] Z. P. Li, B. Y. Song, J. M. Yao et al, Phys. Lett. B, 726:866(2013)
    [77] J. Xiang, Z. P. Li, J. M. Yao et al, Phys. Rev. C, 88:057301(2013)
    [78] Z. H. Wang, J. Xiang, W. H. Long et al, J. Phys. G:Nucl. Part. Phys., 42:045108(2015)
    [79] P. W. Zhao, S. Q. Zhang, and J. Meng, Phys. Rev. C, 89:011301(2014)
    [80] J. Li, J. X. Wei, J. N. Hu et al, Phys. Rev. C, 88:064307(2013)
    [81] P. W. Zhao, S. Q. Zhang, J. Peng et al, Phys. Lett. B, 699:181(2011)
    [82] D. Steppenbeck, R. V. F. Janssens, S. J. Freeman et al, Phys. Rev. C, 85:044316(2012)
    [83] L. F. Yu, P. W. Zhao, S. Q. Zhang et al, Phys. Rev. C, 85:024318(2012)
    [84] J. Li, C. Y. He, Y. Zheng et al, Phys. Rev. C, 88:014317(2013)
    [85] P. W. Zhao, J. Peng, H. Z. Liang et al, Phys. Rev. Lett., 107:122501(2011)
    [86] P. W. Zhao, J. Peng, H. Z. Liang et al, Phys. Rev. C, 85:054310(2012)
    [87] X. W. Li, J. Li, J. B. Lu et al, Phys. Rev. C, 86:057305(2012)
    [88] P. Zhang, B. Qi, and S. Y. Wang, Phys. Rev. C, 89:047302(2014)
    [89] J. Peng and P. W. Zhao, Phys. Rev. C, 91:044329(2015)
    [90] J. Meng, J. Peng, S. Q. Zhang et al, Phys. Rev. C, 73:037303(2006)
    [91] I. Kuti, Q. B. Chen, J. Timr et al, Phys. Rev. Lett., 113:032501(2014)
    [92] Z. Q. Chen, S. Y.Wang, L. Liu et al, Phys. Rev. C, 91:044303(2015)
    [93] Y. F. Niu, Z. M. Niu, N. Paar et al, Phys. Rev. C, 88:034308(2013)
    [94] J. Zhao, B.N. Lu, E.G. Zhao et al, Phys. Rev. C, 86:057304(2012)
    [95] B.N. Lu, E.G. Zhao, and S.G. Zhou, Phys. Rev. C, 85:011301(2012)
    [96] B.N. Lu, J. Zhao, E.G. Zhao et al, Phys. Rev. C, 89:014323(2014)
    [97] J. Zhao, B.N. Lu, D. Vretenar et al, Phys. Rev. C, 91:014321(2015)
    [98] W. Zhang, Z. P. Li, and S. Q. Zhang, Phys. Rev. C, 88:054324(2013)
    [99] Z. X. Li, Z. H. Zhang, and P. W. Zhao, Front. Phys., 10:268(2015)
    [100] 0 H. Z. Liang, N. Van Giai, and J. Meng, Phys. Rev. Lett., 101:122502(2008)
    [101] 1 H. Z. Liang, N. Van Giai, and J. Meng, Phys. Rev. C, 79:064316(2009)
    [102] 2 Z. M. Niu, Y. F. Niu, Q. Liu et al, Phys. Rev. C, 87:051303(2013)
    [103] 3 L. S. Song, J. M. Yao, P. Ring et al, Phys. Rev. C, 90:054309(2014)
    [104] 4 J. M. Yao, L. S. Song, K. Hagino et al, Phys. Rev. C, 91:024316(2015)
    [105] 5 B. A. Brown, Phys. Rev. Lett., 111:162502(2013)
    [106] 6 M. Wang, G. Audi, A. H. Wapstra et al, Chin. Phys. C, 36:1603(2012)
    [107] 7 E. Wigner, Phys. Rev., 51:106(1937)
    [108] 8 P. Van Isacker, D. D. Warner, and D. S. Brenner, Phys. Rev. Lett., 74:4607(1995)
    [109] 9 S. Goriely, M. Samyn, P.H. Heenen et al, Phys. Rev. C, 66:024326(2002)
    [110] 0 Y. Zhang, H. Z. Liang, and J. Meng, Int. J. Mod. Phys. E, 19:55(2010)
  • 加载中

Get Citation
Xue-Wei Xia. Evolution of N=28 shell closure in relativistic continuum Hartree-Bogoliubov theory[J]. Chinese Physics C, 2016, 40(7): 074101. doi: 10.1088/1674-1137/40/7/074101
Xue-Wei Xia. Evolution of N=28 shell closure in relativistic continuum Hartree-Bogoliubov theory[J]. Chinese Physics C, 2016, 40(7): 074101.  doi: 10.1088/1674-1137/40/7/074101 shu
Milestone
Received: 2015-10-16
Revised: 2016-02-22
Fund

    Supported by Major State 973 Program of China (2013CB834400), National Natural Science Foundation of China (11175002, 11335002, 11375015, 11461141002) and Research Fund for Doctoral Program of Higher Education (20110001110087)

Article Metric

Article Views(1353)
PDF Downloads(206)
Cited by(0)
Policy on re-use
To reuse of subscription content published by CPC, the users need to request permission from CPC, unless the content was published under an Open Access license which automatically permits that type of reuse.
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Email This Article

Title:
Email:

Evolution of N=28 shell closure in relativistic continuum Hartree-Bogoliubov theory

    Corresponding author: Xue-Wei Xia,
  • 1. School of Physics and Nuclear Energy Engineering and International Research Center for Nuclei and Particles in the Cosmos, Beihang University, Beijing 100191, China
Fund Project:  Supported by Major State 973 Program of China (2013CB834400), National Natural Science Foundation of China (11175002, 11335002, 11375015, 11461141002) and Research Fund for Doctoral Program of Higher Education (20110001110087)

Abstract: The N=28 shell gap in sulfur, argon, calcium and titanium isotopes is investigated in the framework of relativistic continuum Hartree-Bogoliubov (RCHB) theory. The evolutions of neutron shell gap, separation energy, single particle energy and pairing energy are analyzed, and it is found that the N=28 shell gap is quenched in sulfur isotopes but persists in argon, calcium and titanium isotopes. The evolution of the N=28 shell gap in the N=28 isotonic chain is discussed, and the erosion of the N=28 shell gap is understood with the evolution of potential with proton number.

    HTML

Reference (110)

目录

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return