Very high-frequency gravitational waves from magnetars and gamma-ray bursts

  • Extremely powerful astrophysical electromagnetic (EM) systems could be possible sources of high-frequency gravitational waves (HFGWs). Here, based on properties of magnetars and gamma-ray bursts (GRBs), we address "Gamma-HFGWs" (with very high-frequency around 1020 Hz) caused by ultra-strong EM radiation (in the radiation-dominated phase of GRB fireballs) interacting with super-high magnetar surface magnetic fields (~1011 T). By certain parameters of distance and power, the Gamma-HFGWs would have far field energy density Ωgw around 10-6 and they would cause perturbed signal EM waves of ~10-20 W/m2 in a proposed HFGW detection system based on the EM response to GWs. Specially, Gamma-HFGWs would possess distinctive envelopes with characteristic shapes depending on the particular structures of surface magnetic fields of magnetars, which could be exclusive features helpful to distinguish them from background noise. Results obtained suggest that magnetars could be involved in possible astrophysical EM sources of GWs in the very high-frequency band, and Gamma-HFGWs could be potential targets for observations in the future.
      PCAS:
  • 加载中
  • [1] B. P. Abbott et al (LIGO Scientific Collaboration and Virgo Collaboration), Phys. Rev. Lett., 116(6):061102(2016)
    [2] B. P. Abbott et al (LIGO Scientific Collaboration and Virgo Collaboration), Phys. Rev. Lett., 116(24):241103(2016)
    [3] B. P. Abbott et al (LIGO Scientific Collaboration and Virgo Collaboration), Phys. Rev. Lett., 118:221101(2017)
    [4] B. P. Abbott et al (LIGO Scientific Collaboration and Virgo Collaboration), Phys. Rev. Lett., 119:141101(2017)
    [5] Y. Zhang, W. Zhao, Y. Yuan, and T. Xia, Chin. Phys. Lett., 22(7):1817(2005)
    [6] W. Zhao, M. Li, Phys. Lett. B, 737:329(2014)
    [7] W. Zhao, Y. Zhang, Phys. Rev. D, 74:083006(2006)
    [8] P. A. R. Ade, Y. Akiba, A. E. Anthony et al, Phys. Rev. Lett., 113(2):021301(2014)
    [9] D. Baskaran, L. P. Grishchuk, and A. G. Polnarev, Phys. Rev. D, 74:083008(2006)
    [10] A. G. Polnarev, N. J. Miller, and B. G. Keating, Mon. Not. R. Astron. Soc., 386:1053(2008)
    [11] U. Seljak, M. Zaldarriaga, Phys. Rev. Lett., 78:2054(1997)
    [12] J. R. Pritchard, M. Kamionkowski, Ann. Phys.(N.Y.), 318:3(2005)
    [13] M. Servin, G. Brodin, Phys. Rev. D, 68(4):044017(2003)
    [14] M. E. Gertsenshtein, Sov. Phys. JETP, 14:84(1962)
    [15] D. Boccaletti, V. De Sabbata, P. Fortint, and C. Gualdi, Nuovo Cim. B, 70:129(1970)
    [16] F. Y. Li, H. Wen, and Z. Y. Fang, Chin. Phys. B, 22:120402(2013)
    [17] F. Y. Li, H. Wen, Z. Y. Fang et al, Nucl. Phys. B, 911:500(2016)
    [18] F. Y. Li, M. X. Tang, and D. P. Shi, Phys. Rev. D, 67(10):104008(2003)
    [19] F. Y. Li, R. M. L. Baker, Z. Y. Fang, G. V. Stephenson, and Z. Y. Chen, Eur. Phys. J. C, 56:407(2008)
    [20] F. Y. Li, N. Yang, Z. Y. Fang, R. M. L. Baker, G. V. Stephenson, and H. Wen, Phys. Rev. D, 80(6):064013(2009)
    [21] H. Wen, F. Y. Li, Z. Y. Fang, Phys. Rev. D, 89(10):104025(2014)
    [22] H. Wen, F. Y. Li, Z. Y. Fang, and A. Beckwith, Eur. Phys. J. C, 74:2998(2014)
    [23] D. P. Shi, F. Y. Li, and Y. Zhang, Acta. Phys. Sin., 55:5041(2006)
    [24] J. Li, F. Y. Li, and Y. H. Zhong, Chin. Phys. B, 18:922(2009)
    [25] X. Li, S. Wang, H. Wen, Chin. Phys. C, 40(8):085101(2016)
    [26] T. Piran, Rev. Mod. Phys., 76(4):1143(2005)
    [27] B. D. Metzger, T. A. Thompson, and E. Quataert, Astro-phys. J., 659:561(2007)
    [28] T. Piran, Phys. Rep., 314:575(1999)
    [29] W. K. De Logi, A. R. Mickelson, Phys. Rev. D, 16(10):2915(1977)
    [30] K. H. Rdler, H. Fuchs, U. Geppert et al, Phys. Rev. D, 64(8):083008(2001)
    [31] C. Thompson, Astrophys. J., 688:1258(2008)
    [32] S. R. Kulkarni, S. G. Djorgovski, A. N. Ramaprakash et al, Nature, 393:35(1998)
    [33] S. R. Kulkarni, S. G. Djorgovski, S. C. Odewahn et al, Nature, 398:389(1999)
    [34] D. Eichler, M. Livio, T. Piran, and D. N. Schramm, Nature, 340:126(1999)
    [35] R. Narayan, B. Paczynski, and T. Piran, Astrophys. J. Lett., 395:L83(1992)
    [36] B. Paczynski, Acta Astron., 41:257(1991)
    [37] R. D. Blandford, R. L. Znajek, Mon. Not. R. Astron. Soc., 179:433(1977)
    [38] V. V. Usov, Nature, 357:472(1992)
    [39] V. V. Usov, Mon. Not. R. Astron. Soc., 267:1035(1994)
    [40] M. V. Smolsky, V. V. Usov, Astrophys. J., 461:858(1996)
    [41] M. V. Smolsky, V. V. Usov, Astrophys. J., 531:764(2000)
    [42] G. Drenkhahn, H. C. Spruit, Astron. Astrophys., 391:1141(2002)
    [43] H. C. Spruit, F. Daigne, and G. Drenkhahn, Astron. Astrophys., 369:694(2001)
    [44] D. Eichler, Mon. Not. R. Astron. Soc., 335:883(2002)
    [45] B. Zhang, P. Meszaros, Astrophys. J. Lett., 552:L35(2001)
    [46] T. A. Thompson, arXiv:astro-ph/0611368
    [47] A. Corsi, P. Mszros, Astrophys. J., 702:1171(2009)
    [48] Z. G. Dai, Astrophys. J., 606:1000(2004)
    [49] A. M. Pires, F. Haberl, V. E. Zavlin et al, Astron. Astrophys., 563:A50(2014)
    [50] C. Thompson, R. Gill, Astrophys. J., 791:46(2014)
    [51] D. Fargion, M. Grossi, Chin. J. Astron. Astrophys., 6:342(2006)
    [52] S. Dall'Osso, G. Stratta, D. Guetta et al, Astron. Astrophys., 526:A121(2011)
    [53] C. Thompson, R. C. Duncan, Astrophys. J., 561:980(2001)
    [54] C. Thompson, R. C. Duncan, Mon. Not. R. Astron. Soc., 275:255(1995)
    [55] Y. Kaneko, E. Gogus, C. Kouveliotou et al, Astrophys. J., 710:1335(2010)
    [56] B. D. Metzger, T. A. Thompson, and E. Quataert, AIP Conf. Proc., 1000:413(2008)
    [57] A. I. Ibrahim, T. E. Strohmayer, P. M. Woods et al, Astrophys. J., 558:237(2001)
    [58] J. J. Jia, Y. F. Huang, and K. S. Cheng, Astrophys. J., 677:488(2008)
    [59] G. L. Israel, P. Romano, V. Mangano et al, Astrophys. J., 685:1114(2008)
    [60] J. Goodman, Astrophys. J., 308:L47(1986)
    [61] B. Paczynski, Astrophys. J., 308:L43(1986)
    [62] T. Piran, A. Shemi, and R. Narayan, Mon. Not. R. Astron. Soc., 263:861(1993)
    [63] L. D. Landau, Е. М. Lifshitz, textit The Classical Theory of Fields} Fourth revised English edition (Oxford, MA:Butterworth-Heinemann, 1975), p.87
    [64] B. C. Thomas, C. H. Jackman, A. L. Melott et al, Astrophys. J. Lett., 622:L153(2005)
    [65] C. Thompson, M. Lyutikov, and S. R. Kulkarni, Astrophys. J., 574:332(2002)
    [66] L. Pavan, R. Turolla, S. Zane, and L. Nobili, Mon. Not. R. Astron. Soc., 395:753(2009)
    [67] S. Zane, R. Turolla, Mon. Not. R. Astron. Soc., 366:727(2006)
    [68] M. Ruderman, Astrophys. J., 382:576(1991)
  • 加载中

Get Citation
Hao Wen, Fang-Yu Li, Jin Li, Zhen-Yun Fang and Andrew Beckwith. Very high-frequency gravitational waves from magnetars and gamma-ray bursts[J]. Chinese Physics C, 2017, 41(12): 125101. doi: 10.1088/1674-1137/41/12/125101
Hao Wen, Fang-Yu Li, Jin Li, Zhen-Yun Fang and Andrew Beckwith. Very high-frequency gravitational waves from magnetars and gamma-ray bursts[J]. Chinese Physics C, 2017, 41(12): 125101.  doi: 10.1088/1674-1137/41/12/125101 shu
Milestone
Received: 2017-05-15
Revised: 2017-09-18
Fund

    Supported by National Natural Science Foundation of China (11605015, 11375279, 11205254, 11647307) and the Fundamental Research Funds for the Central Universities (106112017CDJXY300003, 106112017CDJXFLX0014)

Article Metric

Article Views(1724)
PDF Downloads(14)
Cited by(0)
Policy on re-use
To reuse of subscription content published by CPC, the users need to request permission from CPC, unless the content was published under an Open Access license which automatically permits that type of reuse.
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Email This Article

Title:
Email:

Very high-frequency gravitational waves from magnetars and gamma-ray bursts

    Corresponding author: Hao Wen,
  • 1. Department of Physics, Chongqing University, Chongqing 401331, China
Fund Project:  Supported by National Natural Science Foundation of China (11605015, 11375279, 11205254, 11647307) and the Fundamental Research Funds for the Central Universities (106112017CDJXY300003, 106112017CDJXFLX0014)

Abstract: Extremely powerful astrophysical electromagnetic (EM) systems could be possible sources of high-frequency gravitational waves (HFGWs). Here, based on properties of magnetars and gamma-ray bursts (GRBs), we address "Gamma-HFGWs" (with very high-frequency around 1020 Hz) caused by ultra-strong EM radiation (in the radiation-dominated phase of GRB fireballs) interacting with super-high magnetar surface magnetic fields (~1011 T). By certain parameters of distance and power, the Gamma-HFGWs would have far field energy density Ωgw around 10-6 and they would cause perturbed signal EM waves of ~10-20 W/m2 in a proposed HFGW detection system based on the EM response to GWs. Specially, Gamma-HFGWs would possess distinctive envelopes with characteristic shapes depending on the particular structures of surface magnetic fields of magnetars, which could be exclusive features helpful to distinguish them from background noise. Results obtained suggest that magnetars could be involved in possible astrophysical EM sources of GWs in the very high-frequency band, and Gamma-HFGWs could be potential targets for observations in the future.

    HTML

Reference (68)

目录

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return