Discovery potential of Higgs boson pair production through 4l+E final states at a 100 TeV collider

  • We explore the discovery potential of Higgs pair production at a 100 TeV collider via full leptonic mode. The same mode can be explored at the LHC when Higgs pair production is enhanced by new physics. We examine two types of fully leptonic final states and propose a partial reconstruction method, which can reconstruct some useful kinematic observables. It is found that the mT2 variable determined by this reconstruction method and the reconstructed visible Higgs mass are crucial to discriminate the signal and background events. It is also noticed that a new variable, denoted as Δm, which is defined as the mass difference of two possible combinations, is very useful as a discriminant. To examine the detector effects, we consider seven detector setups for a 100 TeV collider and investigate the changes in the sensitivity, and we find that lepton isolation and the minimal lepton Pt cut are crucial in order to reduce the integrated luminosity.
      PCAS:
  • 加载中
  • [1] N. Arkani-Hamed, T. Han, M. Mangano et al., Phys. Rept., 652:1-49(2016)
    [2] T. G. Rizzo, Phys. Rev., D89(9):095022(2014)
    [3] J. Hajer, Y.-Y. Li, T. Liu et al., JHEP, 11:124(2015)
    [4] Y. Gershtein et al., Working Group Report:New Particles, Forces, and Dimensions, in Community Summer Study 2013:Snowmass on the Mississippi (CSS2013) Minneapolis, MN, USA, July 29-August 6, 2013
    [5] J. Bramante, P. J. Fox, A. Martin et al., Phys. Rev., D91:054015(2015)
    [6] M. Low and L.-T. Wang, JHEP, 08:161(2014)
    [7] B. S. Acharya, K. Bożek, C. Pongkitivanichkul et al., JHEP, 02:181(2015)
    [8] Q.-F. Xiang, X.-J. Bi, P.-F. Yin et al., Phys. Rev., D91:095020(2015)
    [9] J. Baglio, A. Djouadi, and J. Quevillon, Rept. Prog. Phys., 79(11):116201(2016)
    [10] S.-F. Ge, H.-J. He, and R.-Q. Xiao, JHEP, 10:007(2016)
    [11] V. D. Barger, T. Han, and R. J. N. Phillips, Phys. Rev., D38:2766(1988)
    [12] V. A. Ilyin, A. E. Pukhov, Y. Kurihara et al., Phys. Rev., D54:6717-6727(1996)
    [13] A. Djouadi, W. Kilian, M. Muhlleitner et al., Eur. Phys. J., C10:27-43(1999)
    [14] G. Ferrera, J. Guasch, D. Lopez-Val et al., Phys. Lett., B659:297-307(2008)
    [15] E. Asakawa, D. Harada, S. Kanemura et al., Phys. Rev., D82:115002(2010)
    [16] J. Baglio, A. Djouadi, R. Grber et al., JHEP, 04:151(2013)
    [17] M. Trodden, Rev. Mod. Phys., 71:1463-1500(1999)
    [18] A. Riotto and M. Trodden, Ann. Rev. Nucl. Part. Sci., 49:35-75(1999)
    [19] A. Kosowsky and M. S. Turner, Phys. Rev., D47:4372-4391(1993)
    [20] C. Grojean and G. Servant, Phys. Rev., D75:043507(2007)
    [21] S. J. Huber and T. Konstandin, JCAP, 0809:022(2008)
    [22] M. Kakizaki, S. Kanemura, and T. Matsui, Phys. Rev., D92(11):115007(2015)
    [23] H. Jiang, T. Liu, S. Sun et al., arXiv:1512.07538(2015)
    [24] F. P. Huang, Y. Wan, D.-G. Wang et al., Phys. Rev., D94(4):041702(2016)
    [25] A. Noble and M. Perelstein, Phys. Rev., D78:063518(2008)
    [26] X.-m. Zhang, Phys. Rev., D47:3065-3067(1993)
    [27] C. Grojean, G. Servant, and J. D. Wells, Phys. Rev., D71:036001(2005)
    [28] F. P. Huang, P.-H. Gu, P.-F. Yin et al., Phys. Rev., D93(10):103515(2016)
    [29] P. Huang, A. Joglekar, B. Li et al., Phys. Rev., D93(5):055049(2016)
    [30] Z.-Z. Xianyu, J. Ren, and H.-J. He, Phys. Rev., D88:096013(2013)
    [31] J. Ren, Z.-Z. Xianyu, and H.-J. He, JCAP, 1406:032(2014)
    [32] H.-J. He, J. Ren, and W. Yao, Phys. Rev., D93(1):015003(2016)
    [33] A. Papaefstathiou and K. Sakurai, JHEP, 02:006(2016)
    [34] C.-Y. Chen, Q.-S. Yan, X. Zhao et al., Phys. Rev., D93(1):013007(2016)
    [35] B. Fuks, J. H. Kim, and S. J. Lee, Phys. Rev., D93(3):035026(2016)
    [36] D. A. Dicus, C. Kao, and W. W. Repko, Phys. Rev., D93(11):113003(2016)
    [37] M. J. Dolan, C. Englert, and M. Spannowsky, JHEP, 10:112(2012)
    [38] S. Biswas, E. J. Chun, and P. Sharma, arXiv:1604.02821(2016)
    [39] M. Gouzevitch, A. Oliveira, J. Rojo et al., JHEP, 07:148(2013)
    [40] D. E. Ferreira de Lima, A. Papaefstathiou, and M. Spannowsky, JHEP, 08:030(2014)
    [41] J. K. Behr, D. Bortoletto, J. A. Frost et al., Eur. Phys. J., C76(7):386(2016)
    [42] A. Papaefstathiou, L. L. Yang, and J. Zurita, Phys. Rev., D87(1):011301(2013)
    [43] L.-C. L, C. Du, Y. Fang et al., Phys. Lett., B755:509-522(2016)
    [44] Q. Li, Z. Li, Q.-S. Yan et al., Phys. Rev., D92(1):014015(2015)
    [45] A. Papaefstathiou, Phys. Rev., D91(11):113016(2015)
    [46] Prospects for measuring Higgs pair production in the channel H()H(bb) using the ATLAS detector at the HL-LHC, Technical Report ATL-PHYS-PUB-2014-019, CERN, Geneva (2014)
    [47] Higgs pair production at the High Luminosity LHC, Technical Report CMS-PAS-FTR-15-002, CERN, Geneva (2015)
    [48] G. Degrassi, S. Di Vita, J. Elias-Miro et al., JHEP, 08:098(2012)
    [49] J. F. Gunion, B. Grzadkowski, and X.-G. He, Phys. Rev. Lett., 77:5172-5175(1996)
    [50] P. S. Bhupal Dev, A. Djouadi, R. M. Godbole et al., Phys. Rev. Lett., 100:051801(2008)
    [51] X.-G. He, G.-N. Li, and Y.-J. Zheng, Int. J. Mod. Phys., A30(25):1550156(2015)
    [52] F. Boudjema, R. M. Godbole, D. Guadagnoli et al., Phys. Rev., D92(1):015019(2015)
    [53] C.-S. Huang and S.-h. Zhu, Phys. Rev., D65:077702(2002)
    [54] Y.-n. Mao and S.-h. Zhu, Phys. Rev., D90(11):115024(2014)
    [55] K. Cheung, J. S. Lee, and P.-Y. Tseng, JHEP, 05:134(2013)
    [56] J. Chang, K. Cheung, J. S. Lee et al., JHEP, 05:062(2014)
    [57] C.-T. Lu, J. Chang, K. Cheung et al., JHEP, 08:133(2015)
    [58] D. Curtin, P. Meade, and C.-T. Yu, JHEP, 11:127(2014)
    [59] J. Cao, Y. He, P. Wu et al., JHEP, 01:150(2014)
    [60] J. Cao, D. Li, L. Shang et al., JHEP, 12:026(2014)
    [61] J. Alwall, R. Frederix, S. Frixione et al., JHEP, 07:079(2014)
    [62] T. Sjostrand, S. Mrenna, and P. Z. Skands, JHEP, 05:026(2006)
    [63] M. Cacciari, G. P. Salam, and G. Soyez, Eur. Phys. J., C72:1896(2012)
    [64] J. de Favereau, C. Delaere, P. Demin et al., JHEP, 02:057(2014)
    [65] C. Degrande, C. Duhr, B. Fuks et al., Comput. Phys. Commun., 183:1201-1214(2012)
    [66] G. Ossola, C. G. Papadopoulos, and R. Pittau, Nucl. Phys., B763:147-169(2007)
    [67] R. K. Ellis, Z. Kunszt, K. Melnikov et al., Phys. Rept., 518:141-250(2012)
    [68] T. Binoth, J. P. Guillet, and G. Heinrich, JHEP, 02:013(2007)
    [69] A. Bredenstein, A. Denner, S. Dittmaier et al., JHEP, 08:108(2008)
    [70] M. V. Garzelli, I. Malamos, and R. Pittau, JHEP, 01:040(2010),[Erratum:JHEP10,097(2010)]
    [71] P. Draggiotis, M. V. Garzelli, C. G. Papadopoulos et al., JHEP, 04:072(2009)
    [72] C. Degrande, Comput. Phys. Commun., 197:239-262(2015)
    [73] F. Goertz, A. Papaefstathiou, L. L. Yang et al., JHEP, 04:167(2015)
    [74] A. Azatov, R. Contino, G. Panico et al., Phys. Rev., D92(3):035001(2015)
    [75] D. de Florian and J. Mazzitelli, Phys. Rev. Lett., 111:201801(2013)
    [76] I. Hinchliffe, A. Kotwal, M. L. Mangano et al., Int. J. Mod. Phys., A30(23):1544002(2015)
    [77] T. Plehn, G. P. Salam, and M. Spannowsky, Phys. Rev. Lett., 104:111801(2010)
    [78] M. Klute, R. Lafaye, T. Plehn et al., Europhys. Lett., 101:51001(2013)
    [79] M. L. Mangano, T. Plehn, P. Reimitz et al., J. Phys., G43(3):035001(2016)
    [80] S. Dawson, A. Ismail, and I. Low, Phys. Rev., D91(11):115008(2015)
    [81] J. Gao, M. Guzzi, J. Huston et al., Phys. Rev., D89(3):033009(2014)
    [82] S. Dulat, T.-J. Hou, J. Gao et al., Phys. Rev., D93(3):033006(2016)
    [83] C. Englert, F. Krauss, M. Spannowsky et al., Phys. Lett., B743:93-97(2015)
    [84] T. Liu and H. Zhang, arXiv:1410.1855(2014)
    [85] J. Baglio, O. Eberhardt, U. Nierste et al., Phys. Rev., D90(1):015008(2014)
    [86] M. McCullough, Phys. Rev., D90(1):015001(2014),[Erratum:Phys. Rev.D92,no.3, 039903(2015)]
    [87] C. Shen and S.-h. Zhu, Phys. Rev., D92(9):094001(2015)
    [88] J. Tian, K. Fujii, and Y. Gao, arXiv:1008.0921(2010)
    [89] J. Tian and K. Fujii, PoS, EPS-HEP2013:316(2013)
    [90] K. Fujii et al., arXiv:1506.05992(2015)
    [91] T. Barklow, J. Brau, K. Fujii et al., arXiv:1506.07830(2015)
    [92] J. Dick, F. Y. Kuo, and I. H. Sloan, Acta Numerica, 22:133-288(2013)
    [93] Z. Li, J. Wang, Q.-S. Yan et al., Chin. Phys., C40(3):033103(2016)
    [94] F. Kuo, Journal of Complexity, 19(3):301-320(2003), oberwolfach Special Issue
    [95] J. Dick, Journal of Complexity, 20(4):493-522(2004)
    [96] G. P. Lepage, J. Comput. Phys., 27:192(1978)
    [97] Expected performance of the ATLAS b-tagging algorithms in Run-2, Technical Report ATL-PHYS-PUB-2015-022, CERN, Geneva (2015)
  • 加载中

Get Citation
Xiaoran Zhao, Qiang Li, Zhao Li and Qi-Shu Yan. Discovery potential of Higgs boson pair production through 4l+E final states at a 100 TeV collider[J]. Chinese Physics C, 2017, 41(2): 023105. doi: 10.1088/1674-1137/41/2/023105
Xiaoran Zhao, Qiang Li, Zhao Li and Qi-Shu Yan. Discovery potential of Higgs boson pair production through 4l+E final states at a 100 TeV collider[J]. Chinese Physics C, 2017, 41(2): 023105.  doi: 10.1088/1674-1137/41/2/023105 shu
Milestone
Received: 2016-09-03
Fund

    Supported by Natural Science Foundation of China (11175251, 11305179, 11675185, 11475180, 11575005) The work of Q. Li and Q.S. Yan is partially supported by CAS Center for Excellence in Particle Physics (CCEPP), X. Zhao is partially supported by the European Union as part of the FP7 Marie Curie Initial Training Network MCnetITN (PITN-GA-2012-315877).

Article Metric

Article Views(1294)
PDF Downloads(26)
Cited by(0)
Policy on re-use
To reuse of Open Access content published by CPC, for content published under the terms of the Creative Commons Attribution 3.0 license (“CC CY”), the users don’t need to request permission to copy, distribute and display the final published version of the article and to create derivative works, subject to appropriate attribution.
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Email This Article

Title:
Email:

Discovery potential of Higgs boson pair production through 4l+E final states at a 100 TeV collider

    Corresponding author: Xiaoran Zhao,
    Corresponding author: Qiang Li,
    Corresponding author: Zhao Li,
    Corresponding author: Qi-Shu Yan,
  • 1.  Centre for Cosmology, Particle Physics and Phenomenology(CP3), Université
  • 2.  Department of Physics and State Key Laboratory of Nuclear Physics and Technology, Peking University Beijing 100871, China
  • 3.  Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
  • 4. School of Physics Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
  • 5. Center for Future High Energy Physics, CAS, Beijing 100049, China
Fund Project:  Supported by Natural Science Foundation of China (11175251, 11305179, 11675185, 11475180, 11575005) The work of Q. Li and Q.S. Yan is partially supported by CAS Center for Excellence in Particle Physics (CCEPP), X. Zhao is partially supported by the European Union as part of the FP7 Marie Curie Initial Training Network MCnetITN (PITN-GA-2012-315877).

Abstract: We explore the discovery potential of Higgs pair production at a 100 TeV collider via full leptonic mode. The same mode can be explored at the LHC when Higgs pair production is enhanced by new physics. We examine two types of fully leptonic final states and propose a partial reconstruction method, which can reconstruct some useful kinematic observables. It is found that the mT2 variable determined by this reconstruction method and the reconstructed visible Higgs mass are crucial to discriminate the signal and background events. It is also noticed that a new variable, denoted as Δm, which is defined as the mass difference of two possible combinations, is very useful as a discriminant. To examine the detector effects, we consider seven detector setups for a 100 TeV collider and investigate the changes in the sensitivity, and we find that lepton isolation and the minimal lepton Pt cut are crucial in order to reduce the integrated luminosity.

    HTML

Reference (97)

目录

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return