×
近期发现有不法分子冒充我刊与作者联系,借此进行欺诈等不法行为,请广大作者加以鉴别,如遇诈骗行为,请第一时间与我刊编辑部联系确认(《中国物理C》(英文)编辑部电话:010-88235947,010-88236950),并作报警处理。
本刊再次郑重声明:
(1)本刊官方网址为cpc.ihep.ac.cn和https://iopscience.iop.org/journal/1674-1137
(2)本刊采编系统作者中心是投稿的唯一路径,该系统为ScholarOne远程稿件采编系统,仅在本刊投稿网网址(https://mc03.manuscriptcentral.com/cpc)设有登录入口。本刊不接受其他方式的投稿,如打印稿投稿、E-mail信箱投稿等,若以此种方式接收投稿均为假冒。
(3)所有投稿均需经过严格的同行评议、编辑加工后方可发表,本刊不存在所谓的“编辑部内部征稿”。如果有人以“编辑部内部人员”名义帮助作者发稿,并收取发表费用,均为假冒。
                  
《中国物理C》(英文)编辑部
2024年10月30日

Isospin effect in peripheral heavy-ion collisions at Fermi energies

  • The isospin effect in peripheral heavy-ion collisions was thoroughly investigated within the framework of the Lanzhou quantum molecular dynamics (LQMD) transport model. A coalescence approach was used to recognize the primary fragments formed in nucleus-nucleus collisions. The secondary decay process of these fragments was described using the statistical code GEMINI. The production mechanism and isospin effect of the projectile-like and target-like fragments were analyzed using the combined approach. It was found that the isospin migration from the high-isospin density to the low-density matter occurred in the neutron-rich nuclear reactions, i.e., 48Ca+208Pb, 86Kr+48Ca/208Pb/124Sn, 136Xe+208Pb, 124Sn+124Sn, and 136Xe+136Xe. A hard symmetry energy was available for creating the neutron-rich fragments, particularly in the medium-mass region. The isospin effect of the neutron-to-proton (n/p) ratio of the complex fragments was reduced when the secondary decay process was included. However, a soft symmetry energy enhanced the n/p ratio of the light particles, particularly at kinetic energies greater than 15 MeV/nucleon.
      PCAS:
  • 加载中
  • [1] M. G. Itkis, E. Vardaci, I. M. Itkis et al, Nucl. Phys. A, 944:204(2015)
    [2] V. Zagrebaev and W. Greiner, J. Phys. G, 34:1(2007)
    [3] Z. Q. Feng, G. M. Jin, J. Q. Li, and W. Scheid, Nucl. Phys. A, 816:33(2009)
    [4] Y. Aritomo, K. Hagino, K. Nishio, and S. Chiba, Phys. Rev. C, 85:044614(2012)
    [5] P. Chomaz, M. Colonna, and J. Randrup, Phys. Rep., 389:263(2004)
    [6] M. Colonna, M. Di Toro, A. Guarnera, V. Latora, and A. Smerzi, Phys. Lett. B, 307:273(1993); M. Colonna, M. Di Toro, and A. Guarnera, Nucl. Phys. A, 580:312(1994)
    [7] J. Pochatlzalla et al, Phys. Rev. Lett., 75:1040(1995)
    [8] Y. G. Ma, Phys. Rev. Lett., 83:3617(1999)
    [9] Y. Zhang, Z. Li, Phys. Rev. C, 71:024604(2005)
    [10] X. G. Deng, Y. G. Ma, Nucl. Sci. Tech., 28:82(2017)
    [11] N. B. Zhang, B. J. Cai, B. A. Li et al, Nucl. Sci. Tech., 28:181(2017)
    [12] V. Baran, M. Colonna, V. Greco, M. Di Toro, Phys. Rep., 410:335(2005)
    [13] L. W. Chen, C. M. Ko, B. A. Li, Phys. Rev. Lett., 94:032701(2005)
    [14] B. A. Li, L. W. Chen, C. M. Ko, Phys. Rep., 464:113(2008)
    [15] Z. Y. Sun, M. B. Tsang, W. G. Lynch et al, Phys. Rev. C, 82:051603(R) (2010)
    [16] Z. Kohley et al, Phys. Rev. C, 83:044601(2011)
    [17] R. Ogul, N. Buyukcizmeci, A. Ergunet al, Nucl. Sci. Tech., 28:18(2017)
    [18] E. De Filippo, A. Pagano, P. Russotto et al, Phys. Rev. C, 86:014610(2012)
    [19] E. De Filippo and A. Pagano, Eur. Phys. J. A, 50:32(2014); P. Russotto et al, Phys. Rev. C, 91:014610(2015)
    [20] Z. Q. Feng, Phys. Rev. C, 94:014609(2016)
    [21] Z. Q. Feng, Phys. Rev. C, 84:024610(2011)
    [22] Z. Q. Feng and H. Lenske, Phys. Rev. C 89, 044617(2014); Z. Q. Feng, 93:041601(R) (2016)
    [23] Z. Q. Feng, W. J. Xie, P. H. Chen, J. Chen, and G. M. Jin, Phys. Rev. C, 92:044604(2015)
    [24] Z. Q. Feng, Nucl. Sci. Tech., 29:40(2018); J. Chen, Z. Q. Feng, and J. S. Wang, Nucl. Sci. Tech., 27:73(2016)
    [25] Y. X. Zhang et al, Phys. Rev. C, 97:034625(2018)
    [26] Z. Q. Feng and G. M. Jin, Chin. Phys. Lett., 26:062501(2009)
    [27] R. J. Charity, M. A. McMahan, G. J. Wozniak et al, Nucl. Phys. A, 483:371(1988)
    [28] Y. F. Guo, P. H. Chen, F. Niu et al, Chin. Phys. C, 41:104104(2017)
    [29] D. D. S. Coupland, M. Youngs, Z. Chajecki et al, Phys. Rev. C, 94:011601(R) (2016)
    [30] Y. Zhang, D. D. S. Coupland, P. Danielewicz et al, Phys. Rev. C, 85:024602(2012)
    [31] T. I. Mikhailova, B. Erdemchimeg, A. G. Artyukh, G. Kaminski, Yu. M. Sereda, M. Colonna, M. Di Toro, and H. H. Wolter, Bull. Russ. Aca. Sci. (Physics), 75:1511(2011) DOI:10.3103/S1062873811110190
    [32] B. Gnoffo et al, Journal of Physics:Conf. Series, 863:012062(2017)
    [33] H. Yao and N. Wang, Phys. Rev. C, 95:014607(2017)
  • 加载中

Get Citation
Ya-Fei Guo, Peng-Hui Chen, Fei Niu and Zhao-Qing Feng. Isospin effect in peripheral heavy-ion collisions at Fermi energies[J]. Chinese Physics C, 2018, 42(12): 124106. doi: 10.1088/1674-1137/42/12/124106
Ya-Fei Guo, Peng-Hui Chen, Fei Niu and Zhao-Qing Feng. Isospin effect in peripheral heavy-ion collisions at Fermi energies[J]. Chinese Physics C, 2018, 42(12): 124106.  doi: 10.1088/1674-1137/42/12/124106 shu
Milestone
Received: 2018-07-22
Revised: 2018-09-20
Fund

    Supported by the National Natural Science Foundation of China (11722546, 11675226) and the Talent Program of South China University of Technology (K5180470)

Article Metric

Article Views(1594)
PDF Downloads(24)
Cited by(0)
Policy on re-use
To reuse of subscription content published by CPC, the users need to request permission from CPC, unless the content was published under an Open Access license which automatically permits that type of reuse.
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Email This Article

Title:
Email:

Isospin effect in peripheral heavy-ion collisions at Fermi energies

    Corresponding author: Zhao-Qing Feng,
  • 1. Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China
  • 2. University of Chinese Academy of Sciences, Beijing 100190, China
  • 3.  School of Physics and Optoelectronics, South China University of Technology, Guangzhou 510640, China
Fund Project:  Supported by the National Natural Science Foundation of China (11722546, 11675226) and the Talent Program of South China University of Technology (K5180470)

Abstract: The isospin effect in peripheral heavy-ion collisions was thoroughly investigated within the framework of the Lanzhou quantum molecular dynamics (LQMD) transport model. A coalescence approach was used to recognize the primary fragments formed in nucleus-nucleus collisions. The secondary decay process of these fragments was described using the statistical code GEMINI. The production mechanism and isospin effect of the projectile-like and target-like fragments were analyzed using the combined approach. It was found that the isospin migration from the high-isospin density to the low-density matter occurred in the neutron-rich nuclear reactions, i.e., 48Ca+208Pb, 86Kr+48Ca/208Pb/124Sn, 136Xe+208Pb, 124Sn+124Sn, and 136Xe+136Xe. A hard symmetry energy was available for creating the neutron-rich fragments, particularly in the medium-mass region. The isospin effect of the neutron-to-proton (n/p) ratio of the complex fragments was reduced when the secondary decay process was included. However, a soft symmetry energy enhanced the n/p ratio of the light particles, particularly at kinetic energies greater than 15 MeV/nucleon.

    HTML

Reference (33)

目录

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return