Finite-size behaviour of generalized susceptibilities in the whole phase plane of the Potts model

  • We study the sign distribution of generalized magnetic susceptibilities in the temperature-external magnetic field plane using the three-dimensional three-state Potts model. We find that the sign of odd-order susceptibility is opposite in the symmetric (disorder) and broken (order) phases, but that of the even-order one remains positive when it is far away from the phase boundary. When the critical point is approached from the crossover side, negative fourth-order magnetic susceptibility is observable. It is also demonstrated that non-monotonic behavior occurs in the temperature dependence of the generalized susceptibilities of the energy. The finite-size scaling behavior of the specific heat in this model is mainly controlled by the critical exponent of the magnetic susceptibility in the three-dimensional Ising universality class.
      PCAS:
  • 加载中
  • [1] J. Adams et al (STAR Collaboration), Nucl. Phys. A, 757:102 (2005)
    [2] P. de Forcrand and O. Philipsen, Nucl. Phys. B, 642:290 (2002)
    [3] S. Ejiri, Phys. Rev. D, 78:074507 (2008)
    [4] E. S. Bowman and J. I. Kapusta, Phys. Rev. C, 79:015202 (2009)
    [5] M. Stephanov, K. Rajagopal, and E. Shuryak, Phys. Rev. Lett., 81:4816 (1998)
    [6] P. de Forcrand and O. Philipsen, Phys. Rev. Lett., 105:152001 (2010)
    [7] Bazavov A, Ding H T, Hegde P et al, Phys. Rev. D, 95:054504 (2017)
    [8] Y. Aoki, G. Endrdi, Z. Fodor, S. D. Katz, and K. K. Szab, Nature, 443:675 (2006)
    [9] M. A. Stephanov, K. Rajagopal, and E. V. Shuryak, Phys. Rev. D, 60:114028 (1999)
    [10] V. Koch, arXiv:0810.2520
    [11] M. Cheng et al, Phys. Rev. D, 79:074505 (2009)
    [12] L. Adamczyk et al (STAR Collaboration), Phys. Rev. Lett., 112:032302 (2014)
    [13] L. Adamczyk et al (STAR Collaboration), Phys. Rev. Lett., 113:092301 (2014)
    [14] F. Karsch, Cent. Eur. J. Phys., 10:1234 (2012)
    [15] A. Bazavov et al, Phys. Rev. Lett., 109:192302 (2012)
    [16] R. Bellwied, S. Borsanyi, Z. Fodor, S. D. Katz, A. Pasztor, C. Ratti, and K. K. Szabo, Phys. Rev. D, 92:114505 (2015)
    [17] S. Borsanyi, Z. Fodor, S. D. Katz, S. Krieg, C. Ratti, and K. K. Szabo, Phys. Rev. Lett., 111:062005 (2013); Phys. Rev. Lett., 113:052301 (2014)
    [18] M. Asakawa, S. Ejiri, and M. Kitazawa, Phys. Rev. Lett., 103:262301 (2009)
    [19] W. J. Fu and Y. L. Wu, Phys. Rev. D, 82:074013 (2010)
    [20] M. A. Stephanov, Phys. Rev. Lett., 107:052301 (2011)
    [21] B. Friman, F. Karsch, K. Redlich, and V. Skokov, Eur. Phys. J. C, 71:1694 (2011)
    [22] J. W. Chen, J. Deng, H. Kohyama, and L. Labun, Phys. Rev. D, 93:034037 (2016); Phys. Rev. D, 95:014038 (2017)
    [23] X. Pan, L. Z. Chen, X. S. Chen, and Y. F. Wu, Nucl. Phys. A, 913:206 (2013)
    [24] A. Patel, Nucl. Phys. B, 243:411 (1984); A. Patel, Phys. Lett. B, 139:394 (1984)
    [25] H. W. J. Blte and R. H. Swendsen, Phys. Rev. Lett., 43:799 (1979)
    [26] W. Janke and R. Villanova, Nucl. Phys. B, 489:679 (1997)
    [27] F. Karsch and S. Stickan, Phys. Lett. B, 488:319 (2000)
    [28] X. Pan, M. M. Xu, and Y. F. Wu, J. Phys. G:Nucl. Part. Phys., 42:015104 (2015)
    [29] F. Y. Wu, Rev. Mod. Phys., 54:235 (1982)
    [30] U. Wolff, Phys. Rev. Lett., 62:361 (1989)
    [31] V. Privman and M. E. Fisher, Phys. Rev. B, 30:322 (1984)
    [32] X. S. Chen, V. Dohm, and A. L. Talapov, Physica A:Statistical Mechanics and its Applications, 232:375 (1996)
    [33] V. Privman, Finite Size Scaling and Numerical Simulation of Statistical Systems (Singapore:World Scientific) (1990)
    [34] H. W. J. Blte, E. Luijten, and J. R. Heringa, J. Phys. A:Math. Gen., 28:6289 (1995)
  • 加载中

Get Citation
Xue Pan, Yanhua Zhang, Lizhu Chen, Mingmei Xu and Yuanfang Wu. Finite-size behaviour of generalized susceptibilities in the whole phase plane of the Potts model[J]. Chinese Physics C, 2018, 42(2): 023110. doi: 10.1088/1674-1137/42/2/023110
Xue Pan, Yanhua Zhang, Lizhu Chen, Mingmei Xu and Yuanfang Wu. Finite-size behaviour of generalized susceptibilities in the whole phase plane of the Potts model[J]. Chinese Physics C, 2018, 42(2): 023110.  doi: 10.1088/1674-1137/42/2/023110 shu
Milestone
Received: 2017-09-29
Revised: 2017-12-03
Fund

    Supported by Fund Project of National Natural Science Foundation of China (11647093, 11405088, 11521064), Fund Project of Sichuan Provincial Department of Education (16ZB0339), Fund Project of Chengdu Technological University (2016RC004) and the Major State Basic Research Development Program of China (2014CB845402)

Article Metric

Article Views(1677)
PDF Downloads(18)
Cited by(0)
Policy on re-use
To reuse of subscription content published by CPC, the users need to request permission from CPC, unless the content was published under an Open Access license which automatically permits that type of reuse.
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Email This Article

Title:
Email:

Finite-size behaviour of generalized susceptibilities in the whole phase plane of the Potts model

    Corresponding author: Xue Pan,
  • 1. School of Electronic Engineering, Chengdu Technological University, Chengdu 611730, China
  • 2. Key Laboratory of Quark and Lepton Physics(MOE) and Institute of Particle Physics, Central China Normal University, Wuhan 430079, China
  • 3.  Key Laboratory of Quark and Lepton Physics(MOE) and Institute of Particle Physics, Central China Normal University, Wuhan 430079, China
  • 4.  School of Physics and Optoelectronic Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China
Fund Project:  Supported by Fund Project of National Natural Science Foundation of China (11647093, 11405088, 11521064), Fund Project of Sichuan Provincial Department of Education (16ZB0339), Fund Project of Chengdu Technological University (2016RC004) and the Major State Basic Research Development Program of China (2014CB845402)

Abstract: We study the sign distribution of generalized magnetic susceptibilities in the temperature-external magnetic field plane using the three-dimensional three-state Potts model. We find that the sign of odd-order susceptibility is opposite in the symmetric (disorder) and broken (order) phases, but that of the even-order one remains positive when it is far away from the phase boundary. When the critical point is approached from the crossover side, negative fourth-order magnetic susceptibility is observable. It is also demonstrated that non-monotonic behavior occurs in the temperature dependence of the generalized susceptibilities of the energy. The finite-size scaling behavior of the specific heat in this model is mainly controlled by the critical exponent of the magnetic susceptibility in the three-dimensional Ising universality class.

    HTML

Reference (34)

目录

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return