×
近期发现有不法分子冒充我刊与作者联系,借此进行欺诈等不法行为,请广大作者加以鉴别,如遇诈骗行为,请第一时间与我刊编辑部联系确认(《中国物理C》(英文)编辑部电话:010-88235947,010-88236950),并作报警处理。
本刊再次郑重声明:
(1)本刊官方网址为cpc.ihep.ac.cn和https://iopscience.iop.org/journal/1674-1137
(2)本刊采编系统作者中心是投稿的唯一路径,该系统为ScholarOne远程稿件采编系统,仅在本刊投稿网网址(https://mc03.manuscriptcentral.com/cpc)设有登录入口。本刊不接受其他方式的投稿,如打印稿投稿、E-mail信箱投稿等,若以此种方式接收投稿均为假冒。
(3)所有投稿均需经过严格的同行评议、编辑加工后方可发表,本刊不存在所谓的“编辑部内部征稿”。如果有人以“编辑部内部人员”名义帮助作者发稿,并收取发表费用,均为假冒。
                  
《中国物理C》(英文)编辑部
2024年10月30日

0+ tetraquark states from improved QCD sum rules: delving into X(5568)

  • In order to investigate the possibility of the recently observed X(5568) being a 0+ tetraquark state, we make an improvement to the study of the related various configuration states in the framework of the QCD sum rules. Particularly, to ensure the quality of the analysis, condensates up to dimension 12 are included to inspect the convergence of operator product expansion (OPE) and improve the final results of the studied states. We note that some condensate contributions could play an important role on the OPE side. By releasing the rigid OPE convergence criterion, we arrive at the numerical value 5.57-0.23+0.35 GeV for the scalar-scalar diquark-antidiquark 0+ state, which agrees with the experimental data for the X(5568) and could support its interpretation in terms of a 0+ tetraquark state with the scalar-scalar configuration. The corresponding result for the axial-axial current is calculated to be 5.77-0.33+0.44 GeV, which is still consistent with the mass of X(5568) in view of the uncertainty. The feasibility of X(5568) being a tetraquark state with the axial-axial configuration therefore cannot be definitely excluded. For the pseudoscalar-pseudoscalar and the vector-vector cases, their unsatisfactory OPE convergence make it difficult to find reasonable work windows to extract the hadronic information.
      PCAS:
  • 加载中
  • [1] V. M. Abazov et al (D0 Collaboration), Phys. Rev. Lett., 117:022003 (2016)
    [2] R. Aaij et al (LHCb Collaboration), Phys. Rev. Lett., 117:152003 (2016)
    [3] The CMS Collaboration, CMS-PAS-BPH-16-002 (2016)
    [4] Z. Yang, Q. Wang, and Ulf-G. Meiner, Phys. Lett. B, 767:470 (2017)
    [5] R. F. Lebed, and A. D. Polosa, Phys. Rev. D, 93:094024 (2016); W. Wang and R. L. Zhu, Chin. Phys. C, 40:093101 (2016); Y. R. Liu, X. Liu, and S. L. Zhu, Phy. Rev. D, 93:074023 (2016); X. G. He and P. Ko, Phys. Lett. B, 761:92 (2016); Fl. Stancu, J. Phys. G, 43:105001 (2016); Q. F. L and Y. B. Dong, Phys. Rev. D, 94:094041 (2016); A. Esposito, A. Pilloni, and A. D. Polosa, Phys. Lett. B, 758:292 (2016); A. Ali, L. Maiani, A. D. Polosa, and V. Riquer, Phys. Rev. D, 9434036 (2016); Z. G. Wang, Eur. Phys. J. C, 76:279 (2016); X. Y. Chen and J. L. Ping, Eur. Phys. J. C, 76:351 (2016); F. Goerke, T. Gutsche, M. A. Ivanov, J. G. Krner, V. E. Lyubovitskij, and P. Santorelli, Phys. Rev. D, 94:094017 (2016)
    [6] C. J. Xiao and D. Y. Chen, arXiv:1603.00228[hep-ph]; X. H. Liu and G. Li, Eur. Phys. J. C, 76:455 (2016); S. S. Agaev, K. Azizi, and H. Sundu, Eur. Phys. J. Plus, 131:351 (2016); T. J. Burns and E. S. Swanson, Phys. Lett. B, 760:627 (2016); F. K. Guo, Ulf-G. Meiner, and B. S. Zou, Commun. Theor. Phys., 65:593 (2016); M. Albaladejo, J. Nieves, E. Oset, Z. F. Sun, and X. Liu, Phys. Lett. B, 757:515 (2016); X. W. Kang and J. A. Oller, Phys. Rev. D, 94:054010 (2016); C. B. Lang, D. Mohler, and S. Prelovsek, Phys. Rev. D, 94:074509 (2016); R. Chen and X. Liu, Phys. Rev. D, 94:034006 (2016); J. X. Lu, X. L. Ren, and L. S. Geng, Eur. Phys. J. C, 77:94 (2017); B. X. Sun, F. Y. Dong, and J. L. Pang, Chin. Phys. C, 41:074104 (2017); H. W. Ke, L. Gao, and X. Q. Li, arXiv:1612.08390[hep-ph]; Y. Z. Liu and I. Zahed, Phys. Lett. B, 762:362 (2016)
    [7] H. X. Chen, W. Chen, X. Liu, Y. R. Liu, and S. L. Zhu, Rept. Prog. Phys., 80:076201 (2017)
    [8] F. K. Guo, C. Hanhart, Ulf-G. Meiner, Q. Wang, Q. Zhao, and B. S. Zou, arXiv:1705.00141[hep-ph]; A. Esposito, A. Pilloni, and A. D. Polosa, Phys. Rep., 668:1 (2016)
    [9] M. A. Shifman, A. I. Vainshtein, and V. I. Zakharov, Nucl. Phys. B, 147:385 (1979); 147:448 (1979); V. A. Novikov, M. A. Shifman, A. I. Vainshtein, and V. I. Zakharov, Fortschr. Phys., 32:585 (1984)
    [10] B. L. Ioffe, in The Spin Structure of The Nucleon, edited by B. Frois, V. W. Hughes, and N. de Groot (World Scientific, Singapore, 1997)
    [11] S. Narison, Camb. Monogr. Part. Phys. Nucl. Phys. Cosmol., 17:1 (2002)
    [12] P. Colangelo and A. Khodjamirian, in At the Frontier of Particle Physics:Handbook of QCD, edited by M. Shifman, Boris Ioffe Festschrift Vol. 3 (World Scientific, Singapore, 2001), pp. 1495-1576
    [13] M. Nielsen, F. S. Navarra, and S. H. Lee, Phys. Rep., 497:41 (2010)
    [14] S. S. Agaev, K. Azizi, and H. Sundu, Phys. Rev. D, 93:074024 (2016)
    [15] Z. G. Wang, Commun. Theor. Phys., 66:335 (2016)
    [16] W. Chen, H. X. Chen, X. Liu, T. G. Steele, and S. L. Zhu, Phys. Rev. Lett., 117:022002 (2016)
    [17] C. M. Zanetti, M. Nielsen, and K. P. Khemchandani, Phys. Rev. D, 93:096011 (2016)
    [18] L. Tang and C. F. Qiao, Eur. Phys. J. C, 76:558 (2016)
    [19] R. Albuquerque, S. Narison, A. Rabemananjara, and D. Rabetiarivony, Int. J. Mod. Phys. A, 31:1650093 (2016)
    [20] H. X. Chen, A. Hosaka, and S. L. Zhu, Phys. Lett. B, 650:369 (2007)
    [21] Z. G. Wang, Nucl. Phys. A, 791:106 (2007)
    [22] R. D. Matheus, F. S. Navarra, M. Nielsen, and R. Rodrigues da Silva, Phys. Rev. D, 76:056005 (2007)
    [23] J. R. Zhang, L. F. Gan, and M. Q. Huang, Phys. Rev. D, 85:116007 (2012); J. R. Zhang and G. F. Chen, Phys. Rev. D, 86:116006 (2012); J. R. Zhang, Phys. Rev. D, 87:076008 (2013); Phys. Rev. D, 89:096006 (2014)
    [24] H. Kim and Y. Oh, Phys. Rev. D, 72:074012 (2005); M. E. Bracco, A. Lozea, R. D. Matheus, F. S. Navarra, and M. Nielsen, Phys. Lett. B, 624:217 (2005); R. D. Matheus, S. Narison, M. Nielsen, and J. M. Richard, Phys. Rev. D, 75:014005 (2007)
    [25] J. R. Zhang and M. Q. Huang, JHEP, 1011:057 (2010); Phys. Rev. D, 83:036005 (2011); Phys. Rev. D, 77:094002 (2008); Phys. Lett. B, 674:28 (2009)
    [26] L. J. Reinders, H. R. Rubinstein, and S. Yazaki, Phys. Rep., 127:1 (1985)
    [27] C. Patrignani et al (Particle Data Group), Chin. Phys. C, 40:100001 (2016)
  • 加载中

Get Citation
Jian-Rong Zhang, Jing-Lan Zou and Jin-Yun Wu. 0+ tetraquark states from improved QCD sum rules: delving into X(5568)[J]. Chinese Physics C, 2018, 42(4): 043101. doi: 10.1088/1674-1137/42/4/043101
Jian-Rong Zhang, Jing-Lan Zou and Jin-Yun Wu. 0+ tetraquark states from improved QCD sum rules: delving into X(5568)[J]. Chinese Physics C, 2018, 42(4): 043101.  doi: 10.1088/1674-1137/42/4/043101 shu
Milestone
Received: 2017-10-30
Revised: 2018-01-02
Fund

    Supported by National Natural Science Foundation of China (11475258, 11105223, 11675263) and the Project in NUDT for Excellent Youth Talents

Article Metric

Article Views(1616)
PDF Downloads(15)
Cited by(0)
Policy on re-use
To reuse of Open Access content published by CPC, for content published under the terms of the Creative Commons Attribution 3.0 license (“CC CY”), the users don’t need to request permission to copy, distribute and display the final published version of the article and to create derivative works, subject to appropriate attribution.
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Email This Article

Title:
Email:

0+ tetraquark states from improved QCD sum rules: delving into X(5568)

    Corresponding author: Jian-Rong Zhang,
  • 1.  Department of Physics, College of Liberal Arts and Sciences, National University of Defense Technology, Changsha 410073, China
  • 2.  College of Optoelectronic Science and Engineering, National University of Defense Technology, Changsha 410073, China
  • 3.  College of Liberal Arts and Sciences, National University of Defense Technology, Changsha 410073, China
Fund Project:  Supported by National Natural Science Foundation of China (11475258, 11105223, 11675263) and the Project in NUDT for Excellent Youth Talents

Abstract: In order to investigate the possibility of the recently observed X(5568) being a 0+ tetraquark state, we make an improvement to the study of the related various configuration states in the framework of the QCD sum rules. Particularly, to ensure the quality of the analysis, condensates up to dimension 12 are included to inspect the convergence of operator product expansion (OPE) and improve the final results of the studied states. We note that some condensate contributions could play an important role on the OPE side. By releasing the rigid OPE convergence criterion, we arrive at the numerical value 5.57-0.23+0.35 GeV for the scalar-scalar diquark-antidiquark 0+ state, which agrees with the experimental data for the X(5568) and could support its interpretation in terms of a 0+ tetraquark state with the scalar-scalar configuration. The corresponding result for the axial-axial current is calculated to be 5.77-0.33+0.44 GeV, which is still consistent with the mass of X(5568) in view of the uncertainty. The feasibility of X(5568) being a tetraquark state with the axial-axial configuration therefore cannot be definitely excluded. For the pseudoscalar-pseudoscalar and the vector-vector cases, their unsatisfactory OPE convergence make it difficult to find reasonable work windows to extract the hadronic information.

    HTML

Reference (27)

目录

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return