×
近期发现有不法分子冒充我刊与作者联系,借此进行欺诈等不法行为,请广大作者加以鉴别,如遇诈骗行为,请第一时间与我刊编辑部联系确认(《中国物理C》(英文)编辑部电话:010-88235947,010-88236950),并作报警处理。
本刊再次郑重声明:
(1)本刊官方网址为cpc.ihep.ac.cn和https://iopscience.iop.org/journal/1674-1137
(2)本刊采编系统作者中心是投稿的唯一路径,该系统为ScholarOne远程稿件采编系统,仅在本刊投稿网网址(https://mc03.manuscriptcentral.com/cpc)设有登录入口。本刊不接受其他方式的投稿,如打印稿投稿、E-mail信箱投稿等,若以此种方式接收投稿均为假冒。
(3)所有投稿均需经过严格的同行评议、编辑加工后方可发表,本刊不存在所谓的“编辑部内部征稿”。如果有人以“编辑部内部人员”名义帮助作者发稿,并收取发表费用,均为假冒。
                  
《中国物理C》(英文)编辑部
2024年10月30日

Fragment distribution in 78,86Kr+181Ta reactions

  • Within the framework of the isospin-dependent quantum molecular dynamics model, along with the GEMINI model, the 86Kr+181Ta reaction at 80, 120 and 160 MeV/nucleon and the 78Kr+181Ta reaction at 160 MeV/nucleon are studied, and the production cross sections of the generated fragments are calculated. More intermediate and large mass fragments can be produced in the reactions with a large range of impact parameter. The production cross sections of nuclei such as the isotopes of Si and P generally decrease with increasing incident energy. Isotopes near the neutron drip line are produced more in the neutron-rich system 86Kr+181Ta.
      PCAS:
  • 加载中
  • [1] P. Chomaz, F. Gulminelli, W. Trautmann, and S. J. Yennello, Eur. Phys. J. A, 30:275(2006)
    [2] G. Chaudhuri, S. Mallik, and S. D. Gupta, Pramana:Journal of Physics, 82:907(2014)
    [3] J. P. Bondorf, R. Donangelo, and I. N. Mishustin, Nucl. Phys. A, 443:321(1985)
    [4] J. P. Bondorf, R. Donangelo, H. Schulz, and I. N. Mishustin, Nucl. Phys. A, 444:460(1985)
    [5] D. H. E. Gross, Rep. Prog. Phys., 53:605(1990)
    [6] S. Pal, S. K. Samaddar, and J. N. De, Nucl. Phys. A, 608:49(1996)
    [7] D. J. Morrissey, B. M. Sherrill, Philos. Trans. R. Soc. A, 356:1985(1998)
    [8] P. Danielewicz, R. Lacey, W. G. Lynch, Science, 298:1592(2002)
    [9] K. A. Bugaev, M. I. Gorenstein, I. N. Mishustin, and W. Greiner, Phys. Lett. B, 498:144(2001)
    [10] H. Jaqaman, A. Z. Mekjian, and L. Zamick, Phys. Rev. C, 27:2782(1993)
    [11] J. N. De, X. Vias, S. K. Patra, and M. Centelles, Phys. Rev. C, 64:057306(2001)
    [12] J. Erler, N. Birge, M. Kortelainen, W. Nazarewicz, E. Olsen, A. M. Perhac, and M. Stoitsov, Nature, 486:509(2012)
    [13] M. Thoennessen, Rep. Prog. Phys., 67:1187(2004)
    [14] P. D. Cottle and K. W. Kemper, Phys., 5:49(2012)
    [15] V. I. Goldanskii, Annu. Rev. Nucl. Part. Sci., 16:1(1966)
    [16] J. Cerny and J. C. Hardy, Annu. Rev. Nucl. Part. Sci., 27:333(1977)
    [17] R. Kalpakchieva et al, Eur. Phys. J. A, 7:451(2000)
    [18] R. A. Kryger, A. Azhari, J. Brown et al, Phys. Rev. C, 56:1971(1996)
    [19] M. Yu, H. L. Wei, Y. D. Song, and C. W. Ma, Chin. Phys. C, 41:(2017) 094001
    [20] C. W. Ma and J. L. Xu, J. Phys. G:Nucl. Part. Phys., 44:125101(2017)
    [21] B. Mei, Phys. Rev. C, 95:034608(2017)
    [22] A. Ono and J. Randrup, Eur. Phys. J. A, 15:105(2008)
    [23] G. Gulminelli and D. Durandet, Nucl. Phys. A, 615:117(1997)
    [24] A. Z. Mekjian, Phys. Rev. C, 17:1051(1978)
    [25] G. Fi G and J. Randrup, Nucl. Phys. A, 404:551(1983)
    [26] S. E. Koonin and J. Randrup, Nucl. Phys. A, 474:173(1987)
    [27] G. Peilert, H. Stcker, W. Greiner, A. Rosenhauer, A. Bohnet, and J. Aichelin, Phys. Rev. C, 39:1402(1989)
    [28] J. Aichelin, Phys. Rep., 202:233(1991)
    [29] A. Ono, H. Horiuchi, T. Maruyama, and A. Ohnishi, Phys. Rev. C, 47:2652(1993)
    [30] S. Ayik and C. Gregoir, Phys. Lett. B, 212:269(1988)
    [31] J. Randrup and B. Remaud, Nucl. Phys. A, 514:339(1990)
    [32] A. Ono, H. Horiuchi, T. Maruyama, and A. Ohnishi, Phys. Rev. Lett., 68:2898(1992)
    [33] H. Feldmeier, Nucl. Phys. A, 515:147(1990)
    [34] F. S. Zhang and E. Suraud, Phys. Rev. C, 51:3201(1995)
    [35] L. W. Chen, F. S. Zhang, and G. M. Jin, Phys. Rev. C, 58:2283(1998)
    [36] C. Hartnack, R. K. Puri, J. Aichelin et al, Eur. Phys. J. A, 1:151(1998)
    [37] R. J. Charity, M. A. McMahan, G. J. Wozniak, R. J. McDonald, and L. G. Moretto, Nucl. Phys. A, 483:371(1988)
    [38] W. Hauser, H. Feshbach, Phys Rev., 87:366(1952)
    [39] M. Mocko, M. B. Tsang, Z. Y. Sun et al, Phys. Rev. C, 76:014609(2007)
    [40] C. W. Ma, H. L. Wei, J. Y. Wang et al, Phys. Rev. C, 79:014606(2009)
    [41] C. W. Ma, H. L. Wei, S. S. han Wang et al, Phys. Lett. B, 742:19(2015)
    [42] C. W. Ma, Y. D. Song, C. Y. Qiao et al, J. Phys. G:Nucl. Part. Phys., 43:045102(2016)
    [43] C. W. Ma, H. L. Wei, and Y. G. Ma, Phys. Rev. C, 88:044612(2013)
    [44] C. W. Ma, S. S. Wang, H. L. Wei, and Y. G. Ma, Chin. Phys. Lett., 30:052501(2013)
  • 加载中

Get Citation
Dong-Hong Zhang and Feng-Shou Zhang. Fragment distribution in 78,86Kr+181Ta reactions[J]. Chinese Physics C, 2018, 42(5): 054107. doi: 10.1088/1674-1137/42/5/054107
Dong-Hong Zhang and Feng-Shou Zhang. Fragment distribution in 78,86Kr+181Ta reactions[J]. Chinese Physics C, 2018, 42(5): 054107.  doi: 10.1088/1674-1137/42/5/054107 shu
Milestone
Received: 2018-01-16
Revised: 2018-03-16
Fund

    Supported by Youth Research Foundation of Shanxi Datong University (2016Q10)

Article Metric

Article Views(1642)
PDF Downloads(30)
Cited by(0)
Policy on re-use
To reuse of subscription content published by CPC, the users need to request permission from CPC, unless the content was published under an Open Access license which automatically permits that type of reuse.
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Email This Article

Title:
Email:

Fragment distribution in 78,86Kr+181Ta reactions

    Corresponding author: Dong-Hong Zhang,
  • 1.  College of Physics and Electronics, Institute of Theoretical Physics, Shanxi Datong University, Datong 037009, China
  • 2. The Key Laboratory of Beam Technology and Material Modification of Ministry of Education, College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875, China
  • 3. Beijing Radiation Center, Beijing 100875, China
  • 4. Center of Theoretical Nuclear Physics, National Laboratory of Heavy Ion Accelerator of Lanzhou, Lanzhou 730000, China
Fund Project:  Supported by Youth Research Foundation of Shanxi Datong University (2016Q10)

Abstract: Within the framework of the isospin-dependent quantum molecular dynamics model, along with the GEMINI model, the 86Kr+181Ta reaction at 80, 120 and 160 MeV/nucleon and the 78Kr+181Ta reaction at 160 MeV/nucleon are studied, and the production cross sections of the generated fragments are calculated. More intermediate and large mass fragments can be produced in the reactions with a large range of impact parameter. The production cross sections of nuclei such as the isotopes of Si and P generally decrease with increasing incident energy. Isotopes near the neutron drip line are produced more in the neutron-rich system 86Kr+181Ta.

    HTML

Reference (44)

目录

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return