Fragment distribution in 78,86Kr+181Ta reactions

  • Within the framework of the isospin-dependent quantum molecular dynamics model, along with the GEMINI model, the 86Kr+181Ta reaction at 80, 120 and 160 MeV/nucleon and the 78Kr+181Ta reaction at 160 MeV/nucleon are studied, and the production cross sections of the generated fragments are calculated. More intermediate and large mass fragments can be produced in the reactions with a large range of impact parameter. The production cross sections of nuclei such as the isotopes of Si and P generally decrease with increasing incident energy. Isotopes near the neutron drip line are produced more in the neutron-rich system 86Kr+181Ta.
      PCAS:
  • 加载中
  • [1] P. Chomaz, F. Gulminelli, W. Trautmann, and S. J. Yennello, Eur. Phys. J. A, 30:275(2006)
    [2] G. Chaudhuri, S. Mallik, and S. D. Gupta, Pramana:Journal of Physics, 82:907(2014)
    [3] J. P. Bondorf, R. Donangelo, and I. N. Mishustin, Nucl. Phys. A, 443:321(1985)
    [4] J. P. Bondorf, R. Donangelo, H. Schulz, and I. N. Mishustin, Nucl. Phys. A, 444:460(1985)
    [5] D. H. E. Gross, Rep. Prog. Phys., 53:605(1990)
    [6] S. Pal, S. K. Samaddar, and J. N. De, Nucl. Phys. A, 608:49(1996)
    [7] D. J. Morrissey, B. M. Sherrill, Philos. Trans. R. Soc. A, 356:1985(1998)
    [8] P. Danielewicz, R. Lacey, W. G. Lynch, Science, 298:1592(2002)
    [9] K. A. Bugaev, M. I. Gorenstein, I. N. Mishustin, and W. Greiner, Phys. Lett. B, 498:144(2001)
    [10] H. Jaqaman, A. Z. Mekjian, and L. Zamick, Phys. Rev. C, 27:2782(1993)
    [11] J. N. De, X. Vias, S. K. Patra, and M. Centelles, Phys. Rev. C, 64:057306(2001)
    [12] J. Erler, N. Birge, M. Kortelainen, W. Nazarewicz, E. Olsen, A. M. Perhac, and M. Stoitsov, Nature, 486:509(2012)
    [13] M. Thoennessen, Rep. Prog. Phys., 67:1187(2004)
    [14] P. D. Cottle and K. W. Kemper, Phys., 5:49(2012)
    [15] V. I. Goldanskii, Annu. Rev. Nucl. Part. Sci., 16:1(1966)
    [16] J. Cerny and J. C. Hardy, Annu. Rev. Nucl. Part. Sci., 27:333(1977)
    [17] R. Kalpakchieva et al, Eur. Phys. J. A, 7:451(2000)
    [18] R. A. Kryger, A. Azhari, J. Brown et al, Phys. Rev. C, 56:1971(1996)
    [19] M. Yu, H. L. Wei, Y. D. Song, and C. W. Ma, Chin. Phys. C, 41:(2017) 094001
    [20] C. W. Ma and J. L. Xu, J. Phys. G:Nucl. Part. Phys., 44:125101(2017)
    [21] B. Mei, Phys. Rev. C, 95:034608(2017)
    [22] A. Ono and J. Randrup, Eur. Phys. J. A, 15:105(2008)
    [23] G. Gulminelli and D. Durandet, Nucl. Phys. A, 615:117(1997)
    [24] A. Z. Mekjian, Phys. Rev. C, 17:1051(1978)
    [25] G. Fi G and J. Randrup, Nucl. Phys. A, 404:551(1983)
    [26] S. E. Koonin and J. Randrup, Nucl. Phys. A, 474:173(1987)
    [27] G. Peilert, H. Stcker, W. Greiner, A. Rosenhauer, A. Bohnet, and J. Aichelin, Phys. Rev. C, 39:1402(1989)
    [28] J. Aichelin, Phys. Rep., 202:233(1991)
    [29] A. Ono, H. Horiuchi, T. Maruyama, and A. Ohnishi, Phys. Rev. C, 47:2652(1993)
    [30] S. Ayik and C. Gregoir, Phys. Lett. B, 212:269(1988)
    [31] J. Randrup and B. Remaud, Nucl. Phys. A, 514:339(1990)
    [32] A. Ono, H. Horiuchi, T. Maruyama, and A. Ohnishi, Phys. Rev. Lett., 68:2898(1992)
    [33] H. Feldmeier, Nucl. Phys. A, 515:147(1990)
    [34] F. S. Zhang and E. Suraud, Phys. Rev. C, 51:3201(1995)
    [35] L. W. Chen, F. S. Zhang, and G. M. Jin, Phys. Rev. C, 58:2283(1998)
    [36] C. Hartnack, R. K. Puri, J. Aichelin et al, Eur. Phys. J. A, 1:151(1998)
    [37] R. J. Charity, M. A. McMahan, G. J. Wozniak, R. J. McDonald, and L. G. Moretto, Nucl. Phys. A, 483:371(1988)
    [38] W. Hauser, H. Feshbach, Phys Rev., 87:366(1952)
    [39] M. Mocko, M. B. Tsang, Z. Y. Sun et al, Phys. Rev. C, 76:014609(2007)
    [40] C. W. Ma, H. L. Wei, J. Y. Wang et al, Phys. Rev. C, 79:014606(2009)
    [41] C. W. Ma, H. L. Wei, S. S. han Wang et al, Phys. Lett. B, 742:19(2015)
    [42] C. W. Ma, Y. D. Song, C. Y. Qiao et al, J. Phys. G:Nucl. Part. Phys., 43:045102(2016)
    [43] C. W. Ma, H. L. Wei, and Y. G. Ma, Phys. Rev. C, 88:044612(2013)
    [44] C. W. Ma, S. S. Wang, H. L. Wei, and Y. G. Ma, Chin. Phys. Lett., 30:052501(2013)
  • 加载中

Get Citation
Dong-Hong Zhang and Feng-Shou Zhang. Fragment distribution in 78,86Kr+181Ta reactions[J]. Chinese Physics C, 2018, 42(5): 054107. doi: 10.1088/1674-1137/42/5/054107
Dong-Hong Zhang and Feng-Shou Zhang. Fragment distribution in 78,86Kr+181Ta reactions[J]. Chinese Physics C, 2018, 42(5): 054107.  doi: 10.1088/1674-1137/42/5/054107 shu
Milestone
Received: 2018-01-16
Revised: 2018-03-16
Fund

    Supported by Youth Research Foundation of Shanxi Datong University (2016Q10)

Article Metric

Article Views(1695)
PDF Downloads(30)
Cited by(0)
Policy on re-use
To reuse of subscription content published by CPC, the users need to request permission from CPC, unless the content was published under an Open Access license which automatically permits that type of reuse.
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Email This Article

Title:
Email:

Fragment distribution in 78,86Kr+181Ta reactions

    Corresponding author: Dong-Hong Zhang,
  • 1.  College of Physics and Electronics, Institute of Theoretical Physics, Shanxi Datong University, Datong 037009, China
  • 2. The Key Laboratory of Beam Technology and Material Modification of Ministry of Education, College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875, China
  • 3. Beijing Radiation Center, Beijing 100875, China
  • 4. Center of Theoretical Nuclear Physics, National Laboratory of Heavy Ion Accelerator of Lanzhou, Lanzhou 730000, China
Fund Project:  Supported by Youth Research Foundation of Shanxi Datong University (2016Q10)

Abstract: Within the framework of the isospin-dependent quantum molecular dynamics model, along with the GEMINI model, the 86Kr+181Ta reaction at 80, 120 and 160 MeV/nucleon and the 78Kr+181Ta reaction at 160 MeV/nucleon are studied, and the production cross sections of the generated fragments are calculated. More intermediate and large mass fragments can be produced in the reactions with a large range of impact parameter. The production cross sections of nuclei such as the isotopes of Si and P generally decrease with increasing incident energy. Isotopes near the neutron drip line are produced more in the neutron-rich system 86Kr+181Ta.

    HTML

Reference (44)

目录

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return