×
近期发现有不法分子冒充我刊与作者联系,借此进行欺诈等不法行为,请广大作者加以鉴别,如遇诈骗行为,请第一时间与我刊编辑部联系确认(《中国物理C》(英文)编辑部电话:010-88235947,010-88236950),并作报警处理。
本刊再次郑重声明:
(1)本刊官方网址为cpc.ihep.ac.cn和https://iopscience.iop.org/journal/1674-1137
(2)本刊采编系统作者中心是投稿的唯一路径,该系统为ScholarOne远程稿件采编系统,仅在本刊投稿网网址(https://mc03.manuscriptcentral.com/cpc)设有登录入口。本刊不接受其他方式的投稿,如打印稿投稿、E-mail信箱投稿等,若以此种方式接收投稿均为假冒。
(3)所有投稿均需经过严格的同行评议、编辑加工后方可发表,本刊不存在所谓的“编辑部内部征稿”。如果有人以“编辑部内部人员”名义帮助作者发稿,并收取发表费用,均为假冒。
                  
《中国物理C》(英文)编辑部
2024年10月30日

Properties of the free energy density using the principle ofmaximum conformality

  • We present a detailed study on the properties of the free energy density at high temperature by applying the principle of maximum conformality (PMC) scale-setting method within effective field theory. The PMC utilizes the renormalization group equation recursively to identify the occurrence and pattern of the non-conformal {βi}-terms, and determines the optimal renormalization scale at each order. Our analysis shows that a more accurate free energy density up to gs5-order level without renormalization scale dependence can be achieved by applying the PMC. We also observe that by using a smaller factorization scale around the effective parameter mE, the PMC prediction is consistent with the lattice QCD prediction derived at low temperature.
      PCAS:
  • 加载中
  • [1] K. Kajantie, M. Laine, K. Rummukainen, and Y. Schroder, Phys. Rev. Lett., 86:10 (2001)
    [2] E. Braaten and A. Nieto, Phys. Rev. D, 53:3421 (1996)
    [3] G. Boyd, J. Engels, F. Karsch, E. Laermann, C. Legeland, M. Lutgemeier, and B. Petersson, Nucl. Phys. B, 469:419 (1996)
    [4] M. Okamoto et al (CP-PACS Collaboration), Phys. Rev. D, 60:094510 (1999)
    [5] C. Bernard et al (MILC Collaboration), Phys. Rev. D, 71:034504 (2005)
    [6] Y. Aoki, Z. Fodor, S. D. Katz, and K. K. Szabo, JHEP, 0601:089 (2006)
    [7] C. Bernard et al, Phys. Rev. D, 75:094505 (2007)
    [8] M. Cheng et al, Phys. Rev. D, 77:01451 (2008)
    [9] G. Endrodi, Z. Fodor, S. D. Katz, and K. K. Szabo, PoS LATTICE, 2007:228 (2007)
    [10] F. Di Renzo, M. Laine, Y. Schroder, and C. Torrero, JHEP, 0809:061 (2008)
    [11] A. Hietanen, K. Kajantie, M. Laine, K. Rummukainen, and Y. Schroder, Phys. Rev. D, 79:045018 (2009)
    [12] A. Bazavov et al, Phys. Rev. D, 80:014504 (2009)
    [13] S. Borsanyi, G. Endrodi, Z. Fodor, A. Jakovac, S. D. Katz, S. Krieg, C. Ratti, and K. K. Szabo, JHEP, 1011:077 (2010)
    [14] S. BorsSnyi, G. Endrodi, Z. Fodor, S. D. Katz, and K. K. Szab_, PoS Lattice, 2010:171 (2014)
    [15] S. Borsanyi, G. Endrodi, Z. Fodor, S. D. Katz, S. Krieg, C. Ratti, and K. K. Szabo, JHEP, 1208:053 (2012)
    [16] S. Borsanyi, G. Endrodi, Z. Fodor, S. D. Katz, and K. K. Szabo, JHEP, 1207:056 (2012)
    [17] S. Borsanyi et al, JHEP, 1208:126 (2012)
    [18] A. Bazavov et al (HotQCD Collaboration), Phys. Rev. D, 86:034509 (2012)
    [19] A. Bazavov et al, Phys. Rev. Lett., 109:192302 (2012)
    [20] O. Philipsen, Prog. Part. Nucl. Phys., 70:55 (2013)
    [21] S. Borsanyi, Z. Fodor, S. D. Katz, S. Krieg, C. Ratti, and K. K. Szabo, Phys. Rev. Lett., 111:062005 (2013)
    [22] A. Bazavov et al, Phys. Rev. Lett., 111:082301 (2013)
    [23] U. Gursoy, Acta Phys. Polon. B, 47:2509 (2016)
    [24] E. V. Shuryak, Sov. Phys. JETP, 47:212 (1978)
    [25] J. I. Kapusta, Nucl. Phys. B, 148:461 (1979)
    [26] T. Toimela, Phys. Lett., 124B:407 (1983)
    [27] P. B. Arnold and C. X. Zhai, Phys. Rev. D, 50:7603 (1994)
    [28] P. B. Arnold and C. X. Zhai, Phys. Rev. D, 51:1906 (1995)
    [29] C. X. Zhai and B. M. Kastening, Phys. Rev. D, 52:7232 (1995)
    [30] E. Braaten and A. Nieto, Phys. Rev. Lett., 76:1417 (1996)
    [31] K. Kajantie, M. Laine, K. Rummukainen, and Y. Schroder, Phys. Rev. D, 67:105008 (2003)
    [32] A. D. Linde, Rept. Prog. Phys., 42:389 (1979)
    [33] A. D. Linde, Phys. Lett., 96B:289 (1980)
    [34] D. J. Gross, R. D. Pisarski, and L. G. Yaffe, Rev. Mod. Phys., 53:43 (1981)
    [35] T. Matsubara, Prog. Theor. Phys., 14:351 (1955)
    [36] W. Celmaster and R. J. Gonsalves, Phys. Rev. D, 20:1420 (1979)
    [37] L. F. Abbott, Phys. Rev. Lett., 44:1569 (1980)
    [38] A. J. Buras, Rev. Mod. Phys., 52:199 (1980)
    [39] G. Grunberg, Phys. Lett., 95B:70 (1980)
    [40] P. M. Stevenson, Phys. Rev. D, 23:2916 (1981)
    [41] S. J. Brodsky, G. P. Lepage, and P. B. Mackenzie, Phys. Rev. D, 28:228 (1983)
    [42] X. G. Wu, S. J. Brodsky, and M. Mojaza, Prog. Part. Nucl. Phys., 72:44 (2013)
    [43] X. G. Wu, Y. Ma, S. Q. Wang, H. B. Fu, H. H. Ma, S. J. Brodsky, and M. Mojaza, Rept. Prog. Phys., 78 (2015) 126201.
    [44] M. Gell-Mann and F. E. Low, Phys. Rev., 95:1300 (1954)
    [45] M. Beneke, Phys. Rept., 317:1 (1999)
    [46] E. Gardi and G. Grunberg, Phys. Lett. B, 517:215 (2001)
    [47] F. Karsch, A. Patkos, and P. Petreczky, Phys. Lett. B, 401:69 (1997)
    [48] S. Chiku and T. Hatsuda, Phys. Rev. D, 58:076001 (1998)
    [49] J. O. Andersen, E. Braaten, and M. Strickland, Phys. Rev. D, 61:074016 (2000)
    [50] J. O. Andersen, E. Braaten, and M. Strickland, Phys. Rev. Lett., 83:2139 (1999)
    [51] J. O. Andersen, E. Braaten, and M. Strickland, Phys. Rev. D, 63:105008 (2001)
    [52] J. O. Andersen, L. E. Leganger, M. Strickland, and N. Su, Phys. Lett. B, 696:468 (2011)
    [53] J. O. Andersen, L. E. Leganger, M. Strickland, and N. Su, JHEP, 1108:053 (2011)
    [54] N. Haque, M. G. Mustafa, and M. Strickland, Phys. Rev. D, 87:no. 10, 105007 (2013)
    [55] N. Haque, A. Bandyopadhyay, J. O. Andersen, M. G. Mustafa, M. Strickland, and N. Su, JHEP, 1405:027 (2014)
    [56] M. Strickland, J. O. Andersen, A. Bandyopadhyay, N. Haque, M. G. Mustafa, and N. Su, Nucl. Phys. A, 931:841 (2014)
    [57] N. Haque, PoS ICPAQGP, 2015:057 (2017)
    [58] B. M. Kastening, Phys. Rev. D, 56:8107 (1997)
    [59] T. Hatsuda, Phys. Rev. D, 56:8111 (1997)
    [60] G. Cvetic and R. Kogerler, Phys. Rev. D, 66:105009 (2002)
    [61] G. Cvetic and R. Kogerler, Phys. Rev. D, 70:114016 (2004)
    [62] T. Hatsuda and T. Kunihiro, Phys. Rept., 247:221 (1994)
    [63] K. Fukushima, Phys. Rev. D, 68:045004 (2003)
    [64] K. Fukushima, Phys. Lett. B, 591:277 (2004)
    [65] C. Ratti, M. A. Thaler, and W. Weise, Phys. Rev. D, 73:014019 (2006)
    [66] S. Mukherjee, M. G. Mustafa, and R. Ray, Phys. Rev. D, 75:094015 (2007)
    [67] A. Bhattacharyya, P. Deb, S. K. Ghosh, and R. Ray, Phys. Rev. D, 82:014021 (2010)
    [68] A. Bhattacharyya, P. Deb, A. Lahiri, and R. Ray, Phys. Rev. D, 83:014011 (2011)
    [69] M. Bluhm and B. Kampfer, Phys. Rev. D, 77:034004 (2008)
    [70] V. M. Bannur, JHEP, 0709:046 (2007)
    [71] V. M. Bannur, Phys. Rev. C, 78:045206 (2008)
    [72] F. G. Gardim and F. M. Steffens, Nucl. Phys. A, 825:222 (2009)
    [73] B. J. Schaefer, M. Wagner, and J. Wambach, PoS CPOD, 2009:017 (2009)
    [74] B. J. Schaefer, M. Wagner, and J. Wambach, Phys. Rev. D, 81:074013 (2010)
    [75] V. Skokov, B. Friman, and K. Redlich, Phys. Rev. C, 83:054904 (2011)
    [76] S. J. Brodsky and X. G. Wu, Phys. Rev. D, 85:034038 (2012)
    [77] S. J. Brodsky and X. G. Wu, Phys. Rev. Lett., 109:042002 (2012)
    [78] M. Mojaza, S. J. Brodsky, and X. G. Wu, Phys. Rev. Lett., 110:192001 (2013)
    [79] S. J. Brodsky, M. Mojaza, and X. G. Wu, Phys. Rev. D, 89:014027 (2014)
    [80] X. G. Wu, J. M. Shen, B. L. Du, and S. J. Brodsky, arXiv:1802.09154[hep-ph].
    [81] X. G. Wu, S. Q. Wang, and S. J. Brodsky, Front. Phys., 11:111201 (2016)
    [82] P. H. Ginsparg, Nucl. Phys. B, 170:388 (1980)
    [83] T. Appelquist and R. D. Pisarski, Phys. Rev. D, 23:2305 (1981)
    [84] S. Nadkarni, Phys. Rev. D, 27:917 (1983)
    [85] A. Bazavov, N. Brambilla, X. Garcia i Tormo, P. Petreczky, J. Soto, and A. Vairo, Phys. Rev. D, 907:074038 (2014)
    [86] S. Q. Wang, X. G. Wu, S. J. Brodsky, and M. Mojaza, Phys. Rev. D, 94:053003 (2016)
    [87] S. Q. Wang, X. G. Wu, X. C. Zheng, G. Chen, and J. M. Shen, J. Phys. G, 41:075010 (2014)
  • 加载中

Get Citation
Shi Bu, Xing-Gang Wu, Jian-Ming Shen and Jun Zeng. Properties of the free energy density using the principle ofmaximum conformality[J]. Chinese Physics C, 2018, 42(8): 083105. doi: 10.1088/1674-1137/42/8/083105
Shi Bu, Xing-Gang Wu, Jian-Ming Shen and Jun Zeng. Properties of the free energy density using the principle ofmaximum conformality[J]. Chinese Physics C, 2018, 42(8): 083105.  doi: 10.1088/1674-1137/42/8/083105 shu
Milestone
Received: 2018-04-08
Fund

    Supported by Natural Science Foundation of China (11625520)

Article Metric

Article Views(1618)
PDF Downloads(17)
Cited by(0)
Policy on re-use
To reuse of Open Access content published by CPC, for content published under the terms of the Creative Commons Attribution 3.0 license (“CC CY”), the users don’t need to request permission to copy, distribute and display the final published version of the article and to create derivative works, subject to appropriate attribution.
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Email This Article

Title:
Email:

Properties of the free energy density using the principle ofmaximum conformality

  • 1. Department of Physics, Chongqing University, Chongqing 401331, China
Fund Project:  Supported by Natural Science Foundation of China (11625520)

Abstract: We present a detailed study on the properties of the free energy density at high temperature by applying the principle of maximum conformality (PMC) scale-setting method within effective field theory. The PMC utilizes the renormalization group equation recursively to identify the occurrence and pattern of the non-conformal {βi}-terms, and determines the optimal renormalization scale at each order. Our analysis shows that a more accurate free energy density up to gs5-order level without renormalization scale dependence can be achieved by applying the PMC. We also observe that by using a smaller factorization scale around the effective parameter mE, the PMC prediction is consistent with the lattice QCD prediction derived at low temperature.

    HTML

Reference (87)

目录

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return