-
$ J/\psi $ photoproduction can proceed via photon–Pomeron fusion, where the photons come from the electromagnetic field of one nucleus and the Pomeron or meson couples to the other. The calculation of the cross section of$ J/\psi $ photoproduction is approached by using a similar method to Ref. [34]. The probability distribution of$ J/\psi $ from coherent photoproduction in two-dimensional transverse momentum space can be calculated by performing a Fourier transformation to the amplitude in coordinate space, written as:$ \quad\frac{{\rm d}^{2} P}{{\rm d} p_{x} {\rm d} p_{y}} =\left|\frac{1}{2 \pi} \int {\rm d}^{2} \vec{x}_{\perp}\left(A_{1}\left(\vec{x}_{\perp}\right)+A_{2}\left(\vec{x}_{\perp}\right)\right) {\rm e}^{{\rm i} p_{\perp} \cdot \vec{x}_{\perp}}\right|^{2}, $
(1) where
$ \vec{x}_{\perp} $ is two-dimensional position vector, and$ A_{1}\left(\vec{x}_{\perp}\right) $ and$ A_{2}\left(\vec{x}_{\perp}\right) $ are the amplitude distributions in the transverse plane from the two colliding nuclei. Following Ref. [35], the production amplitude distribution for vector meson photoproduction is determined by the spatial photon flux and the corresponding$ \gamma A $ scattering amplitude$ \Gamma_{\gamma A \rightarrow V A} $ . According to the equivalent photon approximation [36], the spatial photon flux from a relativistic heavy ion is given by:$ \begin{aligned}[b] n\left(\omega_{\gamma}, \vec{x}_{\perp}\right) =&\frac{4 Z^{2} \alpha}{\omega_{\gamma}}\left|\int \frac{{\rm d}^{2} \vec{k}_{\gamma \perp}}{(2 \pi)^{2}} \vec{k}_{\gamma \perp} \frac{F_{\gamma}\left(\vec{k}_{\gamma}\right)}{\left|\vec{k}_{\gamma}\right|^{2}} {\rm e}^{{\rm i} \vec{x}_{\perp} \cdot \vec{k}_{\gamma \perp}}\right|^{2} \\ \vec{k}_{\gamma} =&\left(\vec{k}_{\gamma \perp}, \frac{\omega_{\gamma}}{\gamma_{c}}\right), \quad \omega_{\gamma}=\frac{1}{2} M_{J/\psi} {\rm e}^{\pm y}, \end{aligned} $
(2) where
$ \vec{k}_{\gamma \perp} $ is the two-dimensional momentum vector perpendicular to the beam direction, Z is the nuclear charge, α is the electromagnetic coupling constant,$ {\gamma_{c}} $ is the Lorentz factor of the nucleus,$ M_{J/ \psi} $ and y are the mass and rapidity of$ J/\psi $ , and$ F_{\gamma}\left(\vec{k}_{\gamma}\right) $ is the nuclear electromagnetic form factor.$ F_{\gamma}\left(\vec{k}_{\gamma}\right) $ is obtained via the Fourier transformation of the charge density in the nucleus. The nuclear density for a nucleus A at a distance r from its center is modeled with a Woods–Saxon distribution for symmetric nuclei:$ \rho_{A}(r)=\frac{\rho_{0}}{1+\exp \left[\left(r-R_{\rm{WS}}\right) / d\right]}, $
(3) where the radius
$ R_{\rm{WS}} $ and skin depth d are based on fits to electron-scattering data [35], and$ \rho_{0} $ is the normalization factor. The parameters of Au and U nuclei are listed in Table 1.$ A $ $ Z $ $R_{ws}/\rm fm$ $d /\rm fm$ Au 197 79 6.38 0.75 U 238 92 6.805 0.605 Table 1. Parameters of Au and U nuclei.
The scattering amplitude
$ \Gamma_{\gamma A \rightarrow V A} $ are found with a Glauber [37] and vector meson dominance (VMD) approach [38]:$\begin{aligned}[b] \Gamma_{\gamma A \rightarrow V A}\left(\vec{x}_{\perp}\right)=&\frac{f_{\gamma N \rightarrow V N}(0)}{\sigma_{V N}}\\&\times2\left[1-\exp \left(-\frac{\sigma_{V N}}{2} T^{\prime}\left(\vec{x}_{\perp}\right)\right)\right], \end{aligned}$
(4) where
$ f_{\gamma N \rightarrow V N}(0) $ is the forward-scattering amplitude for$ \gamma+N \rightarrow V+N $ when momentum transfer from the photon to the nucleon is 0, and$ \sigma_{V N} $ is the total V N cross section.$ f_{\gamma N \rightarrow V N}(0) $ can be determined from the measurements of the forward-scattering cross section, which is well parameterized from worldwide experimental measurements in Ref. [39]. To consider the coherent effect on the z direction, the modified thickness function is written as:$ \begin{aligned}[b] T^{\prime}\left(\vec{x}_{\perp}\right)=&\int_{-\infty}^{+\infty} \rho_{A}\left(\sqrt{\vec{x}_{\perp}^{2}+z^{2}}\right) {\rm e}^{{\rm i} q_{L} z} {\rm d} z,\\ q_{L}=&\frac{M_{V} {\rm e}^{y}}{2 \gamma_{c}}, \end{aligned} $
(5) where
$ q_{L} $ is the longitudinal momentum transfer required to produce a real vector meson. Using the optical theorem and VMD relation, the total cross section for$ V N $ scattering can be given by$ \sigma_{V N}=\frac{f_{V}}{4 \sqrt{\alpha} C} f_{\gamma N \rightarrow V N}, $
(6) where
$ f_{V} $ is the V-photon coupling and C is a correction factor for the nondiagonal coupling through higher mass vector mesons [40]. Finally, the production amplitude can be given by$ A\left(\vec{x}_{\perp}\right)=\Gamma_{\gamma A \rightarrow V A} \sqrt{n\left(\omega_{\gamma}, \vec{x}_{\perp}\right)}. $
(7) The
$ J / \psi $ ${\rm d} N / {\rm d} y$ in a certain centrality bin is related to the cross section$({\rm d} \sigma / {\rm d} y)$ via the following equation:$ \frac{{\rm d} \sigma}{{\rm d} y}(J / \psi)=\int_{b_{\min }}^{b_{\max }} 2 \pi b \frac{{\rm d} N}{{\rm d} y}(J / \psi, b) {\rm d} b. $
(8) In the coherent photoproduction case, the photon interacts with the entire nuclear target as one during the photon–nucleus interaction process, thus the
$ p_T $ of the photoproduced vector meson is constrained to be the level of the inverse of the nucleus size, which is about 60 MeV/c [41].Additionally, the incoherent photon–nucleus interaction contributes to the relatively high transverse momentum of
$ J/\psi $ production in heavy-ion collisions. In this case, the$ p_T $ of the produced$ J/\psi $ meson is constrained to the order of the inverse of the nucleon size, which is about approximately 300 MeV/c [41]. The cross section of incoherent$ J/\psi $ photoproduction$ \sigma_{\gamma A \rightarrow J/\psi A^{\prime}} $ is scaled to the cross section$ \sigma_{\gamma p \rightarrow V p} $ via the Glauber + VMD approach, where$ A^{\prime} $ is the nuclear state after the interaction, and it contains the products of the nuclear disintegration. So the cross section$ \sigma_{\gamma A \rightarrow J/\psi A^{\prime}} $ can be written as:$ \begin{aligned}[b] \quad\quad\sigma_{\gamma A \rightarrow J/\psi A^{\prime}} =&\sigma_{\gamma p \rightarrow V p} \int {\rm d}^{2} \vec{x}_{\perp} T\left(\vec{x}_{\perp}\right) {\rm e}^{-(1 / 2) \sigma_{V N}^{\rm{in}} T\left(\vec{x}_{\perp}\right)}, \\ \sigma_{V N}^{\rm{in}} =&\sigma_{V N}-\sigma_{V N}^{2} /\left(16 \pi B_{V}\right), \end{aligned} $
(9) where
$ T\left(\vec{x}_{\perp}\right) $ is the thickness function of the nucleus,$ \sigma_{V N}^{\rm{in}} $ is the inelastic vector meson–nucleon cross section and$ B_V $ is the slope of the t dependence of the$ \gamma p \rightarrow V p $ scattering [39].In the decay process
$ J/\psi \rightarrow e^+e^- $ , the lowest order decay width is$ \Gamma_{0}=\Gamma_{0}\left(J/\psi \rightarrow e^{+} e^{-}\right) $ . The radiative decay process is$ J/\psi \left(p_{0}\right) \rightarrow e^{-}\left(p_{1}\right)+e^{+}\left(p_{2}\right)+\gamma(k) $ , and the distribution in phase space is:$ \begin{aligned}[b] \frac{1}{\Gamma_{0}} \frac{{\rm d}^{2} \Gamma\left(J/\psi \rightarrow e^+ e^- \gamma\right)}{{\rm d} \varsigma {\rm d} \tau}=&P(\varsigma, \tau) \\ =&\frac{\alpha}{2 \pi}\left(\frac{1+\varsigma^{2}}{1-\varsigma}\right)\left(\frac{1}{\tau}+\frac{1}{1-\varsigma-\tau}\right) \\&- \frac{\alpha a}{4\pi}\left(\frac{1}{\tau^{2}}+\frac{1}{(1-\varsigma-\tau)^{2}}\right)-\frac{\alpha}{\pi}, \\ \varsigma=&\left(p_{1}+p_{2}\right)^{2} / M_{J/\psi}^{2}, \\ \tau=&\left(p_{0}-p_{1}\right)^{2} / M_{J/\psi}^{2}, \end{aligned} $
(10) where a=
$ 4 m_{e}^{2} / M_{J/\psi}^{2} $ , a ≤ ς ≤ 1 [33].In the rest frame of the decaying particle we have
$ \varsigma=1-2 E_{\gamma} / M_{J/\psi}^{2}, \tau=1-2 E_{1} / M_{J/\psi}^{2} $ and$ 1-\varsigma-\tau=1- 2 E_{2} / M_{J/\psi}^{2} $ , and in the center-of-mass system:$ \begin{aligned}[b] \tau=&1-\varsigma-\frac{1}{2}(1-\varsigma)\left(1-r \cos \theta_{1}\right) \\ {\rm { or }}\; \tau=&\frac{1}{2}(1-\varsigma)\left(1-{\rm{r}}\; \cos \theta_{2}\right), \end{aligned} $
(11) with
$ r=\sqrt{1-a / \varsigma} $ and$ \theta_{i} $ the angle between the photon and electron with momentum$ \vec{p}_{i} $ , obviously$ \theta_{1}=\pi-\theta_{2} $ . Variations of$ \theta_{2} $ from$ \theta_{2}=0 $ to$ \theta_{2}=\pi $ corresponds to$\begin{aligned}[b] \tau(0)=&\frac{1}{2}(1-\varsigma)(1-r), \\ \tau(\pi)=&\frac{1}{2}(1-\varsigma)(1+r). \end{aligned}$
By integrating
$ P(\varsigma, \tau) $ over the parameter τ:$ \begin{aligned}[b] \frac{1}{\Gamma_{0}} \frac{{\rm d} \Gamma\left(J/\psi \rightarrow e^+ e^- +\gamma\right)}{{\rm d} \varsigma}=&P(\varsigma) \\ =&\int_{\tau(0)}^{\tau(\pi)} P(\varsigma, \tau) {\rm d} \tau \\ =&\frac{\alpha}{\pi} \frac{1+\varsigma^{2}}{1-\varsigma}\left(\ln \frac{1+r}{1-r}-r\right), \end{aligned} $
(12) one can obtain the distribution
$ P(\varsigma) $ .The radiative photon emission causes a tail towards lower masses in the
$ J/\psi $ mass spectrum. The distribution$ P(m) $ of the dilepton mass after the$ J/\psi $ radiative decay from the calculation is defined as :$ \begin{aligned}[b]& \frac{1}{\Gamma_{0}} \frac{{\rm d} \Gamma\left(J/\psi \rightarrow e^+ e^- \gamma\right)}{{\rm d} m} =P(m) \\ =&\frac{\alpha}{\pi} \frac{2 m}{\left(M_{J/\psi}^{2}-m^{2}\right)}\left(1+\frac{m^{4}}{M_{J/\psi}^{4}}\right)\left(\ln \frac{1+r}{1-r}-r\right), \end{aligned} $
(13) where
$ r=\sqrt{1-4 m_{e}^{2} / m^{2}} $ . In the real data analysis a mass cut is commonly applied on the invariant mass of dilepton to reject backgrounds and improve the significance of$ J/\psi $ signals, so a similar cut is also used in the calculations. On the other hand, the photon also carries part of$ J/\psi $ mass, which introduces a transverse momentum shift for the dielectron pair. The effect on transverse momentum shift will be discussed in the following section.
Calculations of differential momentum transfer spectra for J/ψ photoproduction in heavy-ion collisions
- Received Date: 2021-12-30
- Available Online: 2022-07-15
Abstract: Understanding the gluonic structure in nuclei is one of the most important goals in modern nuclear physics, for which J/ψ photoproduction is suggested as a powerful tool to probe the gluon density distribution. The experimental investigation of the photoproduction process is conventionally studied in ultra-peripheral heavy-ion collisions, and has recently been extended to hadronic collisions. However, theoretical efforts in hadronic heavy-ion collisions are still lacking in the literature. In this paper, we build up a phenomenological framework to calculate the differential momentum transfer spectra for J/ψ photoproduction in hadronic heavy-ion collisions based on a vector meson dominance model. For the first time, we include the effect of internal photon radiation in the calculations, and we find that the results with internal photon radiation could describe the experimental measurements from STAR very well.