-
The propagation of electromagnetic waves in cold plasma leads to a frequency-dependent group velocity of light. Therefore, photons with different energies travelling over the same distance need different amounts of time. This plasma effect, although it is tiny, is detectable if accumulated over cosmological distances. The time delay between low- and high-energy photons propagating from a distant source to earth is proportional to a quantity called the dispersion measure (DM), which is the integral of the electron density along the photon path [64]. The plasma effect is negligible for visible light, but it is important for radio waves in, e.g., FRBs. The DM of an FRB can be obtained from a time-resolved spectrum. The observed DM of an extragalactic FRB consists of three parts: contributions from the Milky Way, intergalactic medium (IGM), and host galaxy [65, 66],
$ \begin{equation} DM_{\rm obs}= DM_{\rm MW}+ DM_{\rm IGM}+\frac{ DM_{\rm host}}{1+z}, \end{equation} $
(1) where
$DM_{\rm host}$ is the DM of the host galaxy in the source frame, z is the redshift of the host galaxy, and the factor$ 1+z $ accounts for cosmic dilation.The DM of the Milky Way can be divided into two components: contributions from the Milky Way interstellar medium (ISM) and Milky Way halo [55],
$ \begin{equation} DM_{MW}= DM_{\rm MW,\,ISM}+ DM_{\rm MW,\,halo}. \end{equation} $
(2) Given the sky position of an FRB,
$DM_{\rm MW,ISM}$ can be well constrained by modelling the electron distribution in the Milky Way ISM from pulsar observations, such as the NE2001 model [53] and the YMW16 model [54]. The Milky Way halo contribution is not well constrained yet, but it is expected to be in the range$ 50-100\; {\rm pc\; cm^{-3}} $ [55].The DM of IGM, assuming that both hydrogen and helium are fully ionized, can be written as [65, 67]
$ \begin{equation} { \overline{DM}_{\rm IGM}}(z)=\frac{21cH_0\Omega_b}{64\pi Gm_p}\int_0^z\frac{f_{\rm IGM}(z)(1+z)}{\sqrt{\Omega_m(1+z)^3+\Omega_\Lambda}}{\rm d}z, \end{equation} $
(3) where
$ m_p $ is the proton mass,$ f_{\rm IGM}(z) $ is the fraction of the baryon mass in IGM,$ H_0 $ is the Hubble constant, G is the Newtonian gravitational constant,$ \Omega_b $ is the normalized baryon matter density, and$ \Omega_m $ and$ \Omega_\Lambda $ are the normalized densities of matter (includes baryon matter and dark matter) and dark energy at present day, respectively. Note that Eq. (3) should be interpreted as the mean contribution from IGM. The actual value would deviate from Eq. (3) due to, e.g., fluctuations in baryon matter, an incomplete ionization of hydrogen or helium, etc.The DM of the host galaxy is difficult to model due to a lack of observations on the local environments of the FRB sources. However, given that the DM of the Milky Way is modeled, and the DM of IGM is predicted by a specific cosmological model, we can invert Eq. (1) to obtain the DM of the host galaxy,
$ \begin{equation} { DM_{\rm host}}=(1+z)({DM_{\rm obs}}-{DM_{\rm MW}}-{ DM_{\rm IGM}}). \end{equation} $
(4) The uncertainties of
$ DM_{\rm host} $ can be calculated using the standard error propagation formula,$ \begin{equation} \sigma_{\rm host}=(1+z)\sqrt{(\sigma_{\rm obs}^2+\sigma_{\rm MW}^2+\sigma_{\rm IGM}^2)}, \end{equation} $
(5) where the uncertainty on
$ DM_{\rm MW} $ is propagated from the uncertainties on$ DM_{\rm MW,\,ISM} $ and$ DM_{\rm MW,halo} $ ,$ \begin{equation} \sigma_{\rm MW}=\sqrt{\sigma_{\rm MW,ISM}^2+\sigma_{\rm MW,halo}^2}. \end{equation} $
(6) Note that the DM contribution from the host galaxy also consists of ISM and halo parts. Without other observations, these two parts are completely degenerated. Therefore, we do not distinguish them and treat them as one factor.
So far, there are in total 19 extragalactic FRBs that are well localized and have an identified host ②. From among these 19 FRBs, we omit FRB20200120E and FRB20190614D. The repeating burst FRB20200120E is localized in the direction of M81, and its redshift is measured to be
$ -0.0001 $ [68]. This burst is very close to the Milky Way, and its peculiar velocity dominates over the Hubble flow, so it is inappropriate to use it in the study of cosmology. The non-repeating burst FRB20190614D has a photometric redshift$ z\approx 0.6 $ [69], but there is a lack of detailed observations on the host galaxy. Therefore, we only consider the remaining 17 FRBs, whose properties are listed in Table 1. From among these 17 FRBs, 6 bursts are repeating and 11 bursts are non-repeating. All FRBs have a well-measured sky position (RA, Dec), an observed dispersion measure ($DM_{\rm obs}$ ), the spectroscopic redshift (z), the stellar mass of the host galaxy ($ M_{\star} $ ), the star formation rate (SFR), the mass-weighted age of the host galaxy (Age), the offset of FRB site from the galactic center (Offset), and the half-light radius of the host galaxy ($ R_{\rm eff} $ ). We calculate the DM of the Milky Way ISM using two different models, i.e., the NE2001 model and YMW16 model, and list the results in the fifth and sixth columns of Table 1, respectively.FRBs RA/
($ ^{\circ} $ )Dec/
($ ^{\circ} $ )$ DM_{\rm obs}/ $
($ {\rm pc\; cm^{-3}} $ )NE2001/
($ {\rm pc\; cm^{-3}} $ )YMW16/
($ {\rm pc\; cm^{-3}} $ )z $ M_{\star}/ $
($ 10^9M_{\odot} $ )SFR/
($ M_{\odot}/{\rm yr} $ )Age/
MyrOffset/
kpc$ R_{\rm eff}/ $
kpcrepeat? References 20121102A $ 82.99 $ $ 33.15 $ 557.00 157.60 287.62 0.1927 $ 0.14\pm0.07 $ $ 0.15\pm0.04 $ $ 257.7 $ $ 0.8\pm0.1 $ $ 2.05\pm0.11 $ Yes [8, 9, 11, 58, 70] 20180301A $ 93.23 $ $ 4.67 $ 536.00 136.53 263.16 0.3305 $ 2.30\pm0.60 $ $ 1.93\pm0.58 $ $ 607.2 $ $ 10.8\pm3.0 $ $ 5.80\pm0.20 $ Yes [71] 20180916B $ 29.50 $ $ 65.72 $ 348.80 168.73 319.42 0.0337 $ 2.15\pm0.33 $ $ 0.06\pm0.02 $ $ 154.9 $ $ 5.5\pm0.0 $ $ 3.57\pm0.36 $ Yes [56, 58, 72, 73] 20180924B $ 326.11 $ $ -40.90 $ 362.16 41.45 27.28 0.3214 $ 13.20\pm5.10 $ $ 0.88\pm0.26 $ $ 383.4 $ $ 3.4\pm0.8 $ $ 2.75\pm0.10 $ No [56, 58, 74–76] 20181030A $ 158.60 $ $ 73.76 $ 103.50 40.16 32.72 0.0039 $ 5.80\pm1.80 $ $ 0.36\pm0.10 $ $ 4800.0 $ $ – $ $ 2.60\pm0.00 $ Yes [77] 20181112A $ 327.35 $ $ -52.97 $ 589.00 41.98 28.65 0.4755 $ 3.98\pm2.02 $ $ 0.37\pm0.11 $ $ 572.4 $ $ 1.7\pm19.2 $ $ 7.19\pm1.70 $ No [58, 75, 78] 20190102C $ 322.42 $ $ -79.48 $ 364.55 56.22 42.70 0.2913 $ 3.39\pm1.02 $ $ 0.86\pm0.26 $ $ 55.6 $ $ 2.3\pm4.2 $ $ 5.00\pm0.15 $ No [55, 57, 58, 75, 76] 20190523A $ 207.06 $ $ 72.47 $ 760.80 36.74 29.75 0.6600 $ 61.20\pm40.10 $ $ 0.09\pm0.00 $ $ 685.9 $ $ 27.2\pm22.6 $ $ 3.28\pm0.18 $ No [58, 79] 20190608B $ 334.02 $ $ -7.90 $ 340.05 37.81 26.44 0.1178 $ 11.60\pm2.80 $ $ 0.69\pm0.21 $ $ 383.4 $ $ 6.5\pm0.8 $ $ 7.37\pm0.07 $ No [55–58, 75, 76] 20190611B $ 320.74 $ $ -79.40 $ 332.63 56.60 43.04 0.3778 $ 0.75\pm0.53 $ $ 0.27\pm0.08 $ $ – $ $ 11.7\pm5.8 $ $ 2.15\pm0.11 $ No [55, 58, 76] 20190711A $ 329.42 $ $ -80.36 $ 592.60 55.37 42.06 0.5217 $ 0.81\pm0.29 $ $ 0.42\pm0.12 $ $ 607.2 $ $ 3.2\pm2.1 $ $ 2.94\pm0.17 $ Yes [55, 57, 58, 76] 20190714A $ 183.98 $ $ -13.02 $ 504.13 38.00 30.94 0.2365 $ 14.20\pm5.50 $ $ 0.65\pm0.20 $ $ 1593.2 $ $ 2.7\pm1.8 $ $ 3.94\pm0.05 $ No [57, 58] 20191001A $ 323.35 $ $ -54.75 $ 507.90 44.22 30.67 0.2340 $ 46.40\pm18.80 $ $ 8.06\pm2.42 $ $ 639.7 $ $ 11.1\pm0.8 $ $ 5.55\pm0.03 $ No [57, 58, 80] 20191228A $ 344.43 $ $ -29.59 $ 297.50 33.75 19.67 0.2432 $ 5.40\pm6.00 $ $ 0.03\pm0.01 $ $ – $ $ 5.7\pm3.3 $ $ 1.78\pm0.06 $ No [71] 20200430A $ 229.71 $ $ 12.38 $ 380.25 27.35 26.33 0.1608 $ 2.10\pm1.10 $ $ 0.26\pm0.08 $ $ 689.5 $ $ 1.7\pm2.2 $ $ 1.64\pm0.53 $ No [58, 71] 20200906A $ 53.50 $ $ -14.08 $ 577.80 36.19 38.37 0.3688 $ 13.30\pm3.70 $ $ 0.48\pm0.14 $ $ 1150.7 $ $ 5.9\pm2.0 $ $ 7.58\pm0.06 $ No [71] 20201124A $ 77.01 $ $ 26.06 $ 413.52 126.49 204.74 0.0979 $ 16.00\pm1.00 $ $ 2.12\pm0.49 $ $ 5000.0 $ $ 1.3\pm0.1 $ $ – $ Yes [81–83] Table 1. Properties of host galaxies of 17 well-localized FRBs.
Figure 1 shows the sky positions of the 17 FRBs in Galactic coordinates. The repeaters and non-repeaters are denoted in red and blue dots, respectively. Four repeaters (FRB20121102A, FRB20180301A, FRB20180916B and FRB20201124A) are located at low Galactic latitudes, so the Milky Way ISM contribution to the DM is very large (see Table 1). The other 13 bursts are located at high Galactic latitudes (
$ |b|>30^{\circ} $ ), hence the Milky Way ISM contribution to the DM is relatively small, with mean values of$ \overline{DM}_{\rm MW,ISM}= 42 $ and 32$ {\rm pc\; cm^{-3}} $ for the NE2001 model and YMW16 model, respectively. Three bursts (FRB20190102C, FRB20190611B and FRB20190711A) have a very similar sky orientation; hence, their Milky Way ISM contributions to the DM are similar to each other. We note that$ DM_{\rm MW,ISM} $ strongly depends on the Milky Way electron models, especially for low-latitude FRBs. At a low Galactic latitude, the YMW16 model predicts a much larger value for$ DM_{\rm MW,ISM} $ than the NE2001 model. At a high Galactic latitude, on the contrary, the YMW16 model in general gives a smaller value of$ DM_{\rm MW,ISM} $ than the NE2001 model.Figure 1. (color online) Sky positions of 17 well-localized FRBs in Galactic coordinates. The repeaters and non-repeaters are denoted in red and blue dots, respectively. The red-dashed line is the Equatorial plane.
We calculate the DM of the host galaxy,
$ DM_{\rm host} $ , by subtracting$ DM_{\rm MW} $ (including the Milky Way ISM and halo contributions) and$ DM_{\rm IGM} $ from the observed$ DM_{\rm obs} $ according to Eq. (4). The$ DM_{\rm IGM} $ term is calculated according to Eq. (3) using the Planck 2018 parameters,$ H_0=67.4 {\rm km\; s^{-1}\; Mpc^{-1}} $ ,$ \Omega_m=0.315 $ ,$ \Omega_\Lambda=0.685 $ and$ \Omega_{b0}=0.0493 $ [84]. The fraction of the baryon mass is assumed to be a constant,$ f_{\rm IGM}=0.84 $ [41, 67]. The uncertainty on$ DM_{\rm host} $ is calculated using Eq. (5). The$ DM_{\rm obs} $ can be tightly constrained by observing the time-resolved spectra of FRBs. According to the FRB catalog [62], the average uncertainty on$DM_{\rm obs} $ is only$ \sim 1.5 $ pc cm$ ^{-3} $ . Both the NE2001 model and the YMW16 model do not provide the uncertainty on$ DM_{\rm MW,ISM} $ . As these two models predict different values for$ DM_{\rm MW,ISM} $ , we take$ \sigma_{\rm MW,ISM} $ as the absolute value of the difference of$ DM_{\rm MW,ISM} $ calculated using these two models. This ensures that the two models give consistent results within$ 1\sigma $ uncertainty. For FRBs at a high Galactic latitude$ (|b|>10^\circ) $ , the value of$ \sigma_{\rm MW,ISM} $ is about 10 pc cm$ ^{-3} $ , while for low-latitude$ (|b|<10^\circ) $ FRBs it is at the order of magnitude 100 pc cm$ ^{-3} $ . The Milky Way halo contribution is assumed to be$ DM_{\rm MW,halo}= 50\; {\rm pc\; cm^{-3}} $ [55], and we add a 50% uncertainty to it. The$ DM_{\rm IGM} $ term has a large uncertainty due to density fluctuations in the large-scale structure [85]. Cosmological simulations show that the uncertainty on$ DM_{\rm IGM} $ increases with the redshift [86]. Here, we use the$ \sigma_{{\rm IGM}}(z) $ relation given in Ref. [40] to calculate the uncertainty.In Fig. 2, we plot the correlations between
$ DM_{\rm host} $ and the properties of the host galaxies. In all subfigures, the vertical axes are$ DM_{\rm host} $ , and the horizonal axes are the redshift, the stellar mass, the SFR, the mass-weighted age, the offset from the galactic center, and the half-light radius, respectively. In Table 2, we list the Spearman's correlation coefficients ρ of six correlations [87]. In general,$ |\rho|<0.3 $ ,$ 0.3<|\rho|<0.7 $ and$ |\rho|>0.7 $ imply that the correlation is weak, moderate and strong, respectively [88]. From Table 2, we see that there is no strong correlation between$ DM_{\rm host} $ and any of the host galaxy parameters, neither in the NE2001 model nor in the YMW16 model. From the upper-left panel of Fig. 2, we note that$DM_{\rm host} $ of the first 8 FRBs at$ z<0.24 $ is strongly linearly correlated with the redshift. The Spearman's correlation coefficients are 1.0 and 0.8 for the NE2001 model and the YMW16 model, respectively. The positive$ DM_{\rm host}-z $ correlation means that high-redshift FRBs generally have a larger host DM than low-redshift FRBs, which may imply that high-redshift galaxies have more diffuse gas than low-redshift galaxies. Due to the small FRB sample and the large uncertainty, it is unclear whether the$ DM_{\rm host}-z $ correlation is intrinsic or not. For high-redshift FRBs ($ z>0.24 $ ), however, the correlation disappears. Therefore, we suspect that the linear$ DM_{\rm host}-z $ correlation at$ z<0.24 $ might have happened by chance. From Table 2, we note that there is a moderate correlation between$ DM_{\rm host} $ and the stellar mass of the host galaxy. The positive$ DM_{\rm host}-M_\star $ correlation implies that a more massive galaxy usually contributes a larger$ DM_{\rm host} $ . This is because more massive galaxies in general contain more diffuse gas. In addition, some other factors, such as the age of the host galaxy may also moderately affect$ DM_{\rm host} $ . A larger FRB sample is required to confirm or falsify the$ DM_{\rm host}-M_\star $ correlation.Figure 2. (color online) Correlations between
$DM_{\rm host}$ and the properties of the host galaxy. The DM of the Milky Way is calculated using two different electron models, i.e., the NE2001 model (red diamonds) and the YMW16 model (black circles).z $ M_{\star} $ SFR Age Offset $ R_{\rm eff} $ NE2001 −0.23 0.36 0.18 0.37 −0.17 0.37 YMW16 −0.04 0.54 0.21 0.43 −0.09 0.19 Table 2. Spearman's correlation coefficients between
$ DM_{\rm host} $ and parameters of the host galaxies.The central value of
$ DM_{\rm host} $ of FRB20190611B (galactic latitude$ b=-33.6^{\circ} $ , redshift$ z=0.3778 $ ) is somehow negative in both the NE2001 model and the YMW16 model, which implies that$ DM_{\rm MW,ISM} $ and/or$ DM_{\rm IGM} $ for this burst are/is overestimated. As the$ DM_{\rm MW,ISM} $ values of FRB 190611 calculated from both models are consistent with those of other FRBs located in similar directions (such as FRB20190102C and FRB 20190711A), the most likely possibility is that$ DM_{\rm MW,ISM} $ is accurate while$ DM_{\rm IGM} $ is overestimated. The overestimation of$ DM_{\rm IGM} $ may be caused by matter fluctuation. For FRB20180301A ($ b=-5.8^{\circ} $ ,$ z=0.3305 $ ) and FRB20180916B ($ b=4.0^{\circ} $ ,$ z=0.0337 $ ), the central values of$ DM_{\rm host} $ calculated from the YMW16 model are negative. This is because the YMW16 model may overestimate the Milky Way ISM contribution at a low Galactic latitude [ 89]. Excluding the unphysical negative values, the mean and standard deviation of$ DM_{\rm host} $ are$ ( \overline{DM}_{\rm host},\sigma_ {DM_{\rm host}})=(131.6, 92.0)\; {\rm pc\; cm}^{-3} $ for NE2001 model, and$ ( \overline{DM}_{\rm host},\sigma_{ DM_{\rm host}})=(120.1, 96.3) {\rm pc\; cm}^{-3} $ for the YMW16 model. -
The DM of IGM in Eq. (3) contains information on cosmology, which can be used to study the Universe. In this section, we use well-localized FRBs to constrain the fraction of the baryon mass in IGM, i.e., the parameter
$ f_{\rm IGM}(z) $ . To test if$ f_{\rm IGM} $ is redshift-dependent or not, we follow Li et al. [40] and parameterize it as a slowly evolving function of the redshift,$ \begin{equation} f_{\rm IGM}=f_{\rm IGM,0}\left(1+\frac{\alpha z}{1+z}\right), \end{equation} $
(7) where
$ f_{\rm IGM,0} $ is the fraction of the baryon mass in the IGM at the present day, and α is a constant.In the previous section, we have shown that there is no strong correlation between
$ DM_{\rm host} $ and any of the host galaxy parameters. Therefore, there is no reason to parameterize$ DM_{\rm host} $ as a function of one or some of the host galaxy parameters. The simplest and most straightforward assumption is that$ DM_{\rm host} $ is a constant. We introduce an uncertainty term$ \sigma_{ DM_{\rm host}} $ to account for possible deviations from the constant. The value of$ \sigma_{ DM_{\rm host}} $ is fixed to be the standard deviation of$ DM_{\rm host} $ , obtained in the previous section, i.e.,$ \sigma_{ DM_{\rm host}}=92.0 $ and 96.3$ {\rm pc\; cm}^{-3} $ in the NE2001 model and YMW16 model, respectively. This choice of$ \sigma_{ DM_{\rm host}} $ , rather than the value calculated from Eq. (5), avoids the double bias caused by the large uncertainty of$ DM_{\rm IGM} $ .By fitting the observed DM to the theoretical prediction, the cosmological parameters can be constrained. The likelihood function is given by
$ \begin{equation} \mathcal{L}({\rm Data}|{\mathit{\boldsymbol{\theta}}})=\prod\limits_{i=1}^N\frac{1}{\sqrt{2\pi}\sigma_{\rm total}}\exp\left(-\frac{1}{2}\chi^2\right), \end{equation} $
(8) where
$ \mathit{\boldsymbol{\theta}} $ is the set of free parameters and 'Data' represents the FRB sample, and$ \begin{equation} \chi^2=\frac{[ DM_{\rm obs}- DM_{\rm MW}- DM_{\rm IGM}-{ DM_{\rm host}/(1+z)}]^2}{\sigma_{\rm total}^2}, \end{equation} $
(9) where
$ DM_{\rm IGM} $ is calculated from Eq. (3), and the total uncertainty is given by [40]$ \begin{equation} \sigma_{\rm total}=\sqrt{\sigma_{\rm obs}^2+\sigma_{\rm MW}^2+\sigma_{\rm IGM}^2+\sigma_{ DM_{\rm host}}^2/(1+z)^2}. \end{equation} $
(10) The posterior probability density functions (PDFs) of the parameters are given by
$ \begin{equation} P({\mathit{\boldsymbol{\theta}}}|{\rm Data})\propto \mathcal{L}({\rm Data}|{\mathit{\boldsymbol{\theta}}})P_0({\boldsymbol\theta}), \end{equation} $
(11) where
$ P_0({\boldsymbol\theta}) $ is the prior of the parameters.We calculate the posterior PDFs of the parameters using the publicly available python package
$\textsf{emcee}$ ③ [90]. Note that$ f_{\rm IGM,0} $ is completely degenerated with the Hubble constant$ H_0 $ and the baryon density$ \Omega_{b} $ , hence we fix the latter two parameters to the Planck 2018 values, i.e.,$ H_0=67.4\; {\rm km\; s^{-1}\; Mpc^{-1}} $ and$ \Omega_{b}=0.0493 $ [84]. In addition,$ \Omega_m $ and$ \Omega_\Lambda $ depict the background Universe and they have been tightly constrained by the Planck data. Therefore, we also fix them to the Planck 2018 values, namely,$ \Omega_m=0.315 $ and$ \Omega_\Lambda=0.685 $ [84]. This leaves three free parameters$ (f_{\rm IGM,0},\alpha, DM_{\rm host}) $ . We use a flat prior on all free parameters:$ f_{\rm IGM,0}\in \mathcal{U}(0,1) $ ,$ \alpha\in \mathcal{U}(-2,2) $ and$ DM_{\rm host}\in \mathcal{U}(0,300)\; {\rm pc\; cm^{-3}} $ .The best-fitting parameters (
$ f_{\rm IGM,0}, \alpha, DM_{\rm host} $ ) are listed in Table 3, and the marginalized posterior PDFs and Fig. 3. FRBs with negative$ DM_{\rm host} $ values are excluded from the fitting. For the NE2001 model, we obtain$ f_{\rm IGM,0}= 0.78_{-0.19}^{+0.15} $ ,$ \alpha=0.20_{-1.14}^{+1.15} $ and$ DM_{\rm host}=141.3_{-55.8}^{+59.8} {\rm pc\; cm^{-3}} $ , where the uncertainties are given with a$ 1\sigma $ confidence level. For the YMW16 model, we obtain$ f_{\rm IGM,0}=0.78_{-0.19}^{+0.15}, $ $ \alpha= 0.29_{-1.18}^{+1.10} $ and$ DM_{\rm host}=135.8_{-60.4}^{+65.6}\; {\rm pc\; cm^{-3}} $ . In both models,$ f_{\rm IGM,0} $ and$ DM_{\rm host} $ can be tightly constrained. Although the constraint on α is loose, the best-fitting α prefers a positive value, which is consistent with the requirement that$ f_{\rm IGM} $ mildly increases with the redshift [40, 86]. The two Milky Way electron models give very consistent results within$ 1\sigma $ uncertainty, which is because high-latitude FRBs have much larger weights than low-latitude FRBs in the fitting, while both models give consistent$ DM_{\rm MW,ISM} $ values for high-latitude FRBs. Based on the limited number of FRBs and the large uncertainty, there is no evidence for a redshift evolution of the baryon mass fraction in IGM.$ f_{\rm IGM,0} $ α $DM_{\rm host} /{\rm pc\, cm^{-3} }$ NE2001 $ 0.78_{-0.19}^{+0.15} $ $ 0.20_{-1.14}^{+1.15} $ $ 141.3_{-55.8}^{+59.8} $ YMW16 $ 0.78_{-0.19}^{+0.15} $ $ 0.29_{-1.18}^{+1.10} $ $ 135.8_{-60.4}^{+65.6} $ Table 3. Best-fitting parameters (
$f_{\rm IGM,0}, \alpha, DM_{\rm host}$ ) by assuming a constant$DM_{\rm host}$ .Figure 3. (color online) Posterior PDFs and confidence contours on the free parameters (
$ f_{\rm IGM,0}, \alpha, DM_{\rm host} $ ) when assuming a constant$ DM_{\rm host} $ . (left panel) NE2001 model; (right panel) YMW16 model.In fact,
$ { DM_{\rm host}} $ can vary significantly from burst to burst. Hence, it is not a good approximation to assume a constant$ { DM_{\rm host}} $ . A more reasonable way to deal with$ {DM_{\rm host}} $ is to model it as a probability distribution and marginalize over the free parameters. It is shown that$ { DM_{\rm host}} $ can be fitted with a log-normal distribution based on theory and cosmological simulations [55, 91, 92]. Therefore, instead of assuming a constant$ {DM_{\rm host}} $ , we model it as a log-normal distribution centered at$ { DM_{\rm host}} $ and refit the data. This is equivalent to using a log-normal prior on the parameter$ { DM_{\rm host}} $ in the MCMC fitting. The best-fitting results are listed in Table 4. The marginalized posterior PDFs and 2-dimensional marginalized confidence contours of the parameter space are plotted in Fig. 4. The best-fitting curves to the extragalactic DM$({ DM_E\equiv DM_{\rm obs}-DM_{\rm MW}=DM_{\rm IGM}+DM_{\rm host}}/(1+z))$ for the NE2001 model and the YMW16 model are plotted in the left and right panels of Fig. 5, respectively. Using log-normal prior, we obtain a larger$f_{\rm IGM}$ value (0.83 vs. 0.78) and a smaller$ DM_{\rm host}$ ($\sim 100$ vs.$\sim 140$ pc cm$^{-3}$ ) than those obtained using a flat prior. Using log-normal prior, the best-fitting$f_{\rm IGM}$ is more consistent with the fiducial value (0.84). This confirms that assuming a log-normal distribution for${DM_{\rm host}}$ is more reasonable than assuming a constant value.$ f_{\rm IGM,0} $ $ \alpha $ $DM_{\rm host} /{\rm (pc\, cm^{-3})}$ NE2001 $ 0.83_{-0.17}^{+0.12} $ $ 0.36_{-1.13}^{+1.02} $ $ 107.7_{-62.9}^{+65.3} $ YMW16 $ 0.83_{-0.17}^{+0.12} $ $ 0.44_{-1.15}^{+1.00} $ $ 94.0_{-59.1}^{+69.0} $ Table 4. Best-fitting parameters (
$ f_{\rm IGM,0}, \alpha, DM_{\rm host} $ ) by assuming a log-normal distribution for$ DM_{\rm host} $ .Figure 4. (color online) Posterior PDFs and confidence contours on the free parameters (
$ f_{\rm IGM,0}, \alpha, DM_{\rm host} $ ) by assuming a log-normal distribution for$DM_{\rm host} $ . (left panel) NE2001 model; (right panel) YMW16 model.Figure 5. (color online) Best-fitting curves to the extragalactic DM for the NE2001 model (left) and YMW16 model (right). Black dots with
$ 1\sigma $ error bars are the data points, red and blue lines are the best-fitting curves assuming flat prior and log-normal prior for$DM_{\rm host}$ , respectively.
Search for correlations between host properties and DMhost of fast radio bursts: constraints on the baryon mass fraction in IGM
- Received Date: 2022-01-31
- Available Online: 2022-07-15
Abstract: The application of fast radio bursts (FRBs) as probes for investigating astrophysics and cosmology requires proper modelling of the dispersion measures of the Milky Way (