-
The MDM introduces a dilaton-like singlet field, denoted as S, and a vector-like fermion field, represented by T. The Lagrangian of the model is defined as follows [54, 55]:
$ \begin{aligned}[b] {\cal{L}} =\;& {\cal{L}}_{{\rm{SM}}}^{\mathrm{without\; }V(H)} \\ & -\frac{1}{2} \partial_{\mu} S \partial^{\mu} S -\bar{T}\left(\not D +\frac{M}{f} S\right) T \\ & -\left[y^{\prime} \bar{T}_{R}\left(q_{3 L} \cdot H\right)+\text { h.c. }\right] -\tilde{V}(S, H) \; , \end{aligned} $
(1) where
$ {\cal{L}}_{{\rm{SM}}}^{\mathrm{without\; }V(H)} $ represents the SM Lagrangian excluding the scalar potential, M is the scale of strong dynamics, f is the vacuum expectation value (VEV) of the singlet field S, and the term$ q_{3 L} $ refers to the quark$S U(2)_L$ doublet of the third generation. The modified scalar potential incorporating the scalar S, given by$ \tilde{V}(S, H) $ , is formulated as [54, 55]$ \begin{aligned}[b] \tilde{V}(S, H) =\;& m_{H}^{2}|H|^{2}+\frac{\lambda_{H}}{4}|H|^{4} \\ &+ \frac{m_{S}^{2}}{2} S^{2}+\frac{\lambda_{S}}{4 !} S^{4}+\frac{\kappa}{2} S^{2}|H|^{2} \; , \end{aligned} $
(2) where
$ m_{H} $ ,$ \lambda_{H} $ ,$ m_{S} $ ,$ \lambda_{S} $ , and κ are free real parameters. For convenience, we introduce a dimensionless parameter [54, 55]:$\eta = \frac{v}{f} N_{T} \; . $
(3) Here, v and f represent the VEVs of the Higgs field H and singlet field S, respectively, with
$ v=246 \; {\rm{GeV}} $ . The variable$ N_{T} $ denotes the number of the field T, where$ N_{T}=1 $ in the minimal model. To achieve a larger value of η, we may increase$ N_{T} $ , thereby avoiding the need for an excessively small f.In the MDM, the fields S and H combine, resulting in the formation of two CP-even mass eigenstates: the SM-liked Higgs boson h and light Higgs s (also known as dilaton). The mixing angle, denoted as
$ \theta_{S} $ , is defined by the following equations:$ H^{0} = \frac{1}{\sqrt{2}}\left(v+h \cos \theta_{S}-s \sin \theta_{S}\right) \, , $
(4) $ S = f+h \sin \theta_{S}+s \cos \theta_{S} \, , $
(5) where
$ H^{0} $ represents the neutral component of the Higgs field, and v and f are the VEVs of the Higgs and singlet field, respectively.Additionally, the mixing angle
$ \theta_{L} $ for the top quark involving the mass eigenstates t and$ t' $ can be defined as follows:$ q_{3 L}^{u} = \cos \theta_{L} t_{L}+\sin \theta_{L} t_{L}^{\prime}, $
(6) $ T_{L} = -\sin \theta_{L} t_{L}+\cos \theta_{L} t_{L}^{\prime} \,. $
(7) In the conditions where
$ m_{t'} \gg m_{t} $ and$ \tan \theta_{L} \ll m_{t'}/m_{t} $ , the normalized couplings of the Higgs boson h and light higgs s can be derived as [54, 55]$ C_{hVV}/{\rm SM} = C_{hff}/{\rm SM} = \cos\theta_S \, , $
(8) $ C_{sVV}/{\rm SM} = C_{sff}/{\rm SM} = -\sin\theta_S \, , $
(9) where V represents either the
$ W^{\pm} $ or Z boson, and f represents the fermions, excluding the top quark. Here,$C_{hVV}/{\rm SM}$ and$C_{hff}/{\rm SM}$ represent the normalized couplings of the Higgs boson h to vector bosons and fermions, respectively, relative to their SM predictions. Similarly,$C_{sVV}/{\rm SM}$ and$C_{sff}/{\rm SM}$ denote the normalized couplings of the light Higgs s to vector bosons and fermions. The normalized couplings between the light Higgs s and the top quark states t and top partner$ t' $ are specified as follows [54, 55]:$ C_{st\bar{t}}/{\rm SM} = -\cos^2\theta_L\sin\theta_S+\eta\sin^2\theta_L\cos\theta_S \, , $
(10) $ C_{st'\bar{t'}}/{\rm SM} = -\sin^2\theta_L\sin\theta_S+\eta\cos^2\theta_L\cos\theta_S\, . $
(11) Here, the terms
$C_{st\bar{t}}/{\rm SM}$ and$C_{st'\bar{t'}}/{\rm SM}$ represent the normalized couplings of the light Higgs s to the top quark pair and top partner pair, respectively. When the mass of the light Higgs,$ m_s $ , is set to 95 GeV, the normalized loop-induced couplings with gluons and photons can be approximated as follows [59]:$ C_{sgg}/{\rm SM} \approx -\sin\theta_S+\eta\cos\theta_S \, , $
(12) $ C_{s\gamma\gamma}/{\rm SM} \approx -\sin\theta_S-0.31\eta\cos\theta_S \, . $
(13) Here,
$C_{sgg}/{\rm SM}$ and$C_{s\gamma\gamma}/{\rm SM}$ denote the normalized couplings of the light Higgs s to gluons and photons, respectively.The free parameters in this model are η,
$ m_s $ ,$ m_{t'} $ ,$ \tan\theta_S $ , and$ \sin\theta_L $ . -
In this study, we investigate the possibility of searching for the light Higgs in the
$ pp \to t \bar{t}s $ process at the 14 TeV HL-LHC. In this model, the mass of the top partner$ m_{t'} $ is assumed to be very large to satisfy constraints derived from LHC observations, and the mass of the light Higgs$ m_{s} $ is fixed at 95 GeV to compare with the CMS result.In our previous studies [59], which aimed to meet experimental and theoretical constraints such as vacuum stability, avoidance of Landau poles, and results from low-mass Higgs or resonance searches at the LEP, Tevatron, and LHC, we carefully examined the parameter space. Accordingly, we consider such a parameter space for all constraints and the existence of a 95 GeV light Higgs:
$ \begin{align} 0.01<\eta &<1.2, \quad\left|\tan \theta_{S}\right|<0.75, \quad \left|\sin \theta_{L}\right|<0.2, \\ m_{s} &= 95 {\rm{GeV}}, \qquad \qquad m_{t^{\prime}} = 1.67 {\rm{TeV}} . \end{align}$
In the MDM, the tree-level Feynman diagrams for the process
$ pp \to t\bar{t}s $ at the LHC are illustrated in Fig. 1. These diagrams capture the mechanism of light Higgs s radiation from top quarks, a pivotal process for probing the Higgs sector postulated by the MDM. The depicted process bears a close resemblance to the well-known$ t\bar{t}H $ process, with the primary distinction being the substitution of the Higgs-top coupling$ C_{htt} $ with the light Higgs-top coupling$ C_{stt} $ . Given this similarity, the cross-section for the$ pp \to t\bar{t}s $ process can be derived analogously to that of the$ t\bar{t}H $ process. Specifically, the cross-section is calculated by modifying the interaction vertex to incorporate the$ C_{stt} $ coupling. Therefore, the cross section can be approximately expressed as follows:Figure 1. Feynman diagrams for
$ pp \to t \bar{t} s $ in the minimal dilaton model (MDM) at the tree level.$ \sigma(p p \to t \bar{t} s) = \sigma(p p \to t \bar{t} H)|^{SM}_{m_H=95 \; {\rm{GeV}}} \times (C_{st\bar{t}}/{\rm SM})^2 \,. $
(14) The next-to-leading order (NLO) result for
$\sigma(p p \to t \bar{t} H)|^{\rm SM}_{m_H=95 \; {\rm{GeV}}}$ is found to be$ 1268 \; {\rm{fb}} $ [60]. By applying Eq. (10), the resulting cross section as a function of$ \sin\theta_S $ is illustrated in Fig. 2. It is evident that the cross section$ \sigma(p p \to t \bar{t} s) $ primarily depends on$ \sin\theta_S $ , and the sign of$ \sin\theta_L $ does not affect the result. This dependency arises because$ |\sin\theta_L| \ll 1 $ , and in Eq. (10), the term$ \sin^2\theta_L $ can be neglected. Consequently, the coupling ratio$(C_{st\bar{t}}/{\rm SM})^2$ approximates to$ \cos^4\theta_L\sin^2\theta_S $ , showcasing a quadratic relationship with$ \sin\theta_S $ .Figure 2. (color online) Cross section of the
$ p p \to t \bar{t} s $ process versus$ \sin\theta_S $ , with$ \eta = 0.2\; (\rm left),\; 0.6\; (middle), \; 1.2\; (right) $ . The blue, orange, and green lines represent$ |\sin\theta_L| = $ 0.2, 0.1, and 0, respectively.The light Higgs mainly decays into
$ b\bar{b} $ ,$ c\bar{c} $ ,$ \tau^+\tau^- $ ,$ W W^* $ ,$ ZZ^* $ ,$ gg $ , and$ \gamma\gamma $ . The light Higgs decay branching ratio can be calculated from the SM Higgs decay information:$ {\rm Br}_{s\rightarrow xx}={\rm Br}_{s\rightarrow xx}^{\rm SM}\times|C_{s xx}/{\rm SM}|^{2}\times\frac{\Gamma_{\rm tot}^{\rm SM}}{\Gamma_{\rm tot}^{\phi}}, $
(15) where
$ xx $ represent$ b\bar{b} $ ,$ c\bar{c} $ ,$ \tau^+\tau^- $ ,$ W W^* $ ,$ ZZ^* $ ,$ gg $ , and$ \gamma\gamma $ , and$ \phi = h, s $ in the MDM.$\Gamma_{\rm tot}^{\rm SM}$ and$\Gamma_{\rm tot}^{\phi}$ are the total decay widths of the 95 GeV SM Higgs H and light Higgs s, respectively, and$\Gamma_{\rm tot}^{\phi}$ can be written as$ \Gamma_{\rm tot}^{\phi}=\Gamma_{\rm tot}^{\rm SM}\times\sum\limits_{xx} \left[{\rm Br}_{s\rightarrow xx}^{\rm SM}\times|C_{s xx}/{\rm SM}|^{2} \right], $
(16) where the 95 GeV SM Higgs decay information is given as [60]
$\begin{align} {\rm B r}_{s \rightarrow b \bar{b}}^{\rm S M} & =0.804, & {\rm B r}_{s \rightarrow c \bar{c}}^{\rm S M} & =0.0373, \\ {\rm Br}_{s \rightarrow \tau^+ \tau^-}^{\rm S M} & =0.0841, & {\rm B r}_{s \rightarrow W W^*}^{\rm S M} & =0.00472, \\ {\rm B r}_{s \rightarrow Z Z^*}^{\rm S M} & =0.000672, & {\rm B r}_{s \rightarrow g g}^{\rm S M} & =0.0674, \\ {\rm B r}_{s \rightarrow \gamma \gamma}^{\rm S M} & =0.00140, & \Gamma_{\rm t o t}^{\rm S M} & =2.32\; \mathrm{MeV}.\end{align}$
In Fig. 3, we plot the decay branching ratios of the light Higgs boson s as a function of
$ \sin\theta_S $ . Our analysis confirms that the decay branching ratios are not significantly influenced by the$ \sin\theta_L $ parameter; therefore, we set$ \sin\theta_L=0 $ . For samples where$ \sin\theta_S>0 $ , the branching ratio${\rm Br}(s\to\gamma\gamma)$ is greater than for those with$ \sin\theta_S<0 $ . Additionally, the minimum value of${\rm Br}(s\to\gamma\gamma)$ is influenced by the parameter η. Specifically, when η is set to 0.2, 0.6, and 1.2, the minimum values of${\rm Br}(s\to\gamma\gamma)$ correspond to$ \sin\theta_S $ values of 0.1, 0.2, and 0.4, respectively.Figure 3. (color online) Decay branching ratios of the light Higgs boson s as a function of
$ \sin\theta_S $ in the MDM, with$ \sin\theta_L = 0 $ and$ \eta = 0.2\; (\rm left),\; 0.6\; (middle), \; 1.2\; (right) $ . The decay channels$ xx $ include$ b\bar{b} $ ,$ c\bar{c} $ ,$ \tau^+\tau^- $ ,$ W W^* $ ,$ ZZ^* $ ,$ gg $ , and$ \gamma\gamma $ .In Fig. 4, we present the cross section of the
$ pp \to t\bar{t}(s \to \gamma\gamma) $ process as a function of$ \sin\theta_S $ . The cross section$ \sigma(pp \to t\bar{t}(s \to \gamma\gamma)) $ is calculated as the product of$ \sigma(pp \to t\bar{t}s) $ and${\rm Br}(s\to\gamma\gamma)$ , given byFigure 4. (color online) Cross section of the
$ p p \to t \bar{t} (s \to \gamma \gamma) $ process versus$ \sin\theta_S $ , with$ \eta = 0.2\; (\rm left),\; 0.6\; (middle), \; 1.2\; (right) $ . The blue, orange, and green curves represent$ |\sin\theta_L| = 0.2,~ 0.1, ~0 $ , respectively.$ \begin{aligned}[b] \sigma(p p \to t \bar{t} (s \to \gamma \gamma)) =\;& |\sigma(p p \to t \bar{t} H)|^{\rm SM}_{m_H=95 \; {\rm{GeV}}} \\ &\times (C_{st\bar{t}}/{\rm SM})^2 \times {\rm Br}_{s\rightarrow \gamma\gamma} . \end{aligned} $
(17) Our analysis indicates that the cross section
$ \sigma(pp \to t\bar{t}(s \to \gamma\gamma)) $ is primarily affected by$ \sin\theta_S $ and η, with the$ \sin\theta_L $ parameter exerting minimal influence. Notably, the cross section becomes significantly small when$ \sin\theta_S \approx 0 $ , attributable to$ \sigma(pp \to t\bar{t}s) \approx 0 $ under such conditions. Furthermore, for samples where$ \sin\theta_S<0 $ , the cross section$ \sigma(pp \to t\bar{t}(s \to \gamma\gamma)) $ is smaller compared to those with$ \sin\theta_S>0 $ , owing to the correlation of$ \sin\theta_S<0 $ with lower${\rm Br}(s\to\gamma\gamma)$ values.To assess observability, we conduct collider Monte Carlo simulations to explore the sensitivity of the
$ pp \to t\bar{t}s $ process at the 14 TeV LHC, focusing on the decay channel$ pp \to t\bar{t}s \to W^+ b W^- \bar{b} \gamma\gamma. $
(18) At tree level, the signal produces two top quarks and a light Higgs boson in the final state. The top quarks predominantly decay into b quarks and W bosons. Considering the light Higgs boson's decay into a diphoton, the final state consists of two b quarks, two W bosons, and two photons (
$ WWbb\gamma\gamma $ ), manifesting as a narrow diphoton resonance centered at the light Higgs mass of 95 GeV.Backgrounds can be categorized based on their behavior in diphoton systems as either resonant or non-resonant. The resonant backgrounds, including
$ tth $ and$ tjh $ , feature a Higgs boson that can decay into a diphoton in the final state, with the top quark decaying into a b quark and W boson. In the case of$ tjh $ , the light jet can be misidentified as a b jet. The non-resonant backgrounds consist of processes such as$ bb\gamma\gamma $ ,$ tt\gamma\gamma $ ,$ tj\gamma\gamma $ ,$ tt\gamma $ , and$ Wjj\gamma\gamma $ , with$ tj\gamma\gamma $ and$ Wjj\gamma\gamma $ involving a light jet being misidentified as a b jet.Signal and background events at the parton level were generated using
$\rm{MadGraph5_aMC@NLO_v3.4.1}$ [61]. Subsequently,$\rm{PYTHIA_v8.2}$ [62] was employed for particle decay, parton shower, and hadronization processes. The simulation of the detector response was conducted with$\rm{Delphes_v3.4.1}$ [63], adopting the default values for mistagging efficiencies. Jet clustering was performed with the anti-kT algorithm[64], and the$\rm{NNPDF23LO1}$ [65] parton distribution functions were selected for our simulation. Event analysis was performed with$\rm{MadAnalysis5_v1.9.60}$ [66].To determine appropriate kinematic cuts, Fig. 5 displays normalized distributions for both the signals and SM backgrounds. The selection criteria for particles and jets are based on quality metrics for leptons, jets, and photons, specified as follows:
Figure 5. (color online) Normalized distributions of nine kinematic variables, including
$ p_T^{\gamma_1} $ (upper left),$ p_T^{\gamma_2} $ (upper middle),$ p_T^{\ell_1} $ (upper right),$\not E_T$ (middle left),$ \Delta R_{j_1,j_2} $ (middle),$ \Delta R_{\gamma_1, \gamma_2} $ (middle right),$ M [\gamma_1\gamma_2] $ (lower left),$ M_T[\gamma_1\gamma_2] $ (lower middle), and$ M_T[\gamma_1\gamma_2 b_1] $ (lower right), for the signals and SM backgrounds at the 14 TeV LHC.$ p_{T}^{j/b} > 20 \, {\rm{GeV}}, \quad p_{T}^{\ell/\gamma} > 10 \, {\rm{GeV}}, $
(19) $ |\eta_{i}| < 5,\quad \Delta R_{ij} > 0.4 , (i, j = j, b, \ell, \gamma). $
(20) To enhance the signal-to-background ratio for the
$ WWbb\gamma\gamma $ signal amidst the QCD background, it is crucial to include at least one leptonic decay of a W boson into a lepton and neutrino, manifesting as a lepton with missing transverse energy ($\not E_T$ ). To this end, we apply a series of cuts in four stages:(1) Basic Cut: Selection criteria include at least one lepton (
$ N(\ell) \geq 1 $ ), two photons ($ N(\gamma) \geq 2 $ ), and one b-jet ($ N(b) \geq 1 $ ), alongside thresholds for missing transverse energy and spatial separation:$ \not E_T > 20 \, {\rm{GeV}}, \quad \Delta R_{j_1,j_2} < 3.1 \, \quad \Delta R_{\gamma_1, \gamma_2} < 3.3 $
(21) with specified
$ p_T $ criteria for photons and leptons:$ p_{T}^{\gamma_1} > 55 \, {\rm{GeV}}, \quad p_{T}^{\gamma_2} > 25 \, {\rm{GeV}} , \quad 10 < p_{T}^{\ell_1} <100 \, {\rm{GeV}} $
(22) (2) Diphoton Invariant Mass Cut: Concentrating on the diphoton invariant mass narrowing down around the light Higgs mass (
$ 95 \; {\rm{GeV}} $ ) to improve signal clarity:$ 90 < M [\gamma_1\gamma_2] <100 \, {\rm{GeV}} $
(23) (3) Transverse Invariant Mass of Diphoton Cut: Refining the selection further based on the diphoton transverse invariant mass to diminish background:
$ 20 < M_T[\gamma_1\gamma_2] <100 \, {\rm{GeV}} $
(24) (4) Transverse Invariant Mass of Diphoton with a b-Jet Cut: Narrowing down events based on the combined transverse invariant mass of the diphoton plus a b-jet:
$ 40 < M_T[\gamma_1\gamma_2 b] <300 \, {\rm{GeV}}. $
(25) We apply these cuts to our benchmark points and backgrounds to assess the signal efficiency. The outcomes of these sequential cuts are presented in Table 1. Notably, the predominant background originates from the
$ tt\gamma\gamma $ process. After implementing the basic cut, the$ bb\gamma\gamma $ background becomes negligible, attributed to the inclusion of a lepton and missing transverse energy ($\not E_T$ ) criteria. Upon applying the cut on the invariant mass around 95 GeV, backgrounds from SM Higgs processes, specifically$ tjh $ and$ tth $ , are effectively eliminated. The subsequent cut on the transverse invariant mass of the diphoton system further excludes the background involving missed tagged photons, namely,$ tt\gamma $ . Finally, the cut on the transverse invariant mass of the diphoton system with a b-jet successfully removes the incorrectly tagged b-jet background from the$ Wjj\gamma\gamma $ process.Cuts Signal ( $\sigma \times 10^{-3} \;{\rm{fb}} $ )Background ( $ \sigma\times 10^{-3} \;{\rm{fb}}$ )$ tts $ $ bb\gamma\gamma $ $ tj\gamma\gamma $ $ tjh $ $ tt\gamma $ $ tt\gamma\gamma $ $ tth $ $ Wjj\gamma\gamma $ Initial 500 7646000 17510 78 5120000 11180 563 218000 Basic cuts 15.65 0.00 35.02 0.97 1751.04 116.94 22.70 152.60 $ M[\gamma_1 \gamma_2] $ 15.00 0.00 1.40 0.00 102.91 6.48 0.02 8.72 $ M_T[\gamma_1 \gamma_2] $ 14.40 0.00 1.40 0.00 0.00 5.14 0.02 4.36 $ M_T[\gamma_1 \gamma_2 b] $ 12.25 0.00 0.70 0.00 0.00 4.25 0.02 0.00 Table 1. Cut flow of the cross sections for a benchmark point with
$ \eta=0.2, \sin\theta_S=-0.6, \sin\theta_L = 0.15 $ .In Fig. 6, we illustrate the luminosity required to achieve specified statistical significance levels on the η versus
$ \sin\theta_S $ plane, assuming$ \sin\theta_L = 0 $ . Our analysis confirms that$ \sin\theta_L $ has a minimal impact on the outcomes. To estimate the signal significance, we employ the Poisson formula [67]:Figure 6. (color online) Luminosity required to achieve a specified statistical significance of
$ 2\sigma $ (left),$ 3\sigma $ (middle), and$ 5\sigma $ (right) on the η versus$ \sin\theta_S $ plane, with$ \sin\theta_L = 0 $ . The red curve represents the luminosity threshold of$ L = 300 \, {\rm{fb}}^{-1} $ , and the green curve denotes$ L = 3000 \, {\rm{fb}}^{-1} $ .$ {\cal{S}} = \sqrt{2L\left[(S+B) \ln \left(1+\frac{S}{B}\right)-S\right]} \, , $
(26) where S and B represent the signal and background cross sections, respectively, and L is the integrated luminosity. The results demonstrate how the statistical significance (
$ {\cal{S}} $ ) values vary with integrated luminosity L. Statistical significance levels of$ 2\sigma $ ,$ 3\sigma $ , and$ 5\sigma $ are illustrated from left to right. The red line indicates a luminosity threshold of$ L = 300 \; {\rm{fb}}^{-1} $ , whereas the green line marks$ L = 3000 {\rm{fb}}^{-1} $ . From the left figure, it is evident that regions where$ \eta+4\sin\theta_S<-2 $ or$ \eta+4\sin\theta_S>2 $ can be covered at the$ 2\sigma $ level with an integrated luminosity of$ L = 300 \; {\rm{fb}}^{-1} $ . Similarly, regions where$ \eta+4\sin\theta_S<-1.2 $ or$ \sin\theta_S>0.2 $ can be covered at the$ 2\sigma $ level with$ L = 3000 \, {\rm{fb}}^{-1} $ . In the middle plane, the region where$ \sin\theta_S>0.4 $ can reach a$ 3\sigma $ significance with$ L = 300 \, {\rm{fb}}^{-1} $ . Additionally, areas defined by$ \eta+3.3\sin\theta_S<-1 $ or$ \sin\theta_S>0.2 $ can achieve a$ 3\sigma $ level with$ L = 3000 \, {\rm{fb}}^{-1} $ . The right plane demonstrates that regions satisfying$ \eta+3\sin\theta_S<-1.2 $ or$ \sin\theta_S>0.25 $ can achieve a$ 5\sigma $ level at an integrated luminosity of$ L = 3000 \; {\rm{fb}}^{-1} $ .
95 GeV light Higgs in the top-pair-associated diphoton channel at the LHC in the minimal dilaton model
- Received Date: 2024-02-20
- Available Online: 2024-07-15
Abstract: Motivated by experimental hints and theoretical frameworks indicating the existence of an extended Higgs sector, we explore the feasibility of detecting a 95 GeV light Higgs boson decaying into a diphoton within the minimal dilaton model at the 14 TeV LHC. Initially, we identify the correlations between the production cross section, decay branching ratios, and model parameters, e.g., the scalar mixing angle