-
First, we introduce a nonrelativistic quark model to denote the quenched quark interactions. Furthermore, Hamiltonian
$ H_Q $ can be expressed as:$ \begin{aligned}[b] H_Q = m_{b} + m_{\bar{c}} + \frac{\nabla^2}{2m_r}-C_F\frac{{\alpha}_s}{r}+br+C_{b\bar{c}}\end{aligned} $
$ \begin{aligned}[b] + \frac{32{\alpha}_s{\sigma}^3 {\rm e}^{-{\sigma}^2r^2}}{9\sqrt{\pi}m_bm_{\bar{c}}} {{\boldsymbol{S}}}_{b} \cdot {{\boldsymbol{S}}}_{\bar{c}}+H_{SL}, \end{aligned} $
(1) where the reduced quark mass
$ m_r $ satisfies$ m_r=m_b m_{\bar{c}}/ (m_b+m_{\bar{c}}) $ . Specifically,$ {{\boldsymbol{S}}}_{i} $ denotes the heavy quark spin operator. The linear confining assumption is employed and parameters$ m_{b} $ ,$ m_c=m_{\bar{c}} $ ,$ C_{b\bar{c}} $ ,$ \sigma $ ,$ b $ , and$ \alpha_s $ in the quenched quark model Hamiltonian will be refitted from the knowledge of the existing hadrons.The left spin and orbital related term
$ H_{SL} $ has the expression:$ \begin{aligned}[b] H_{SL} =\;& \left(\frac{{\boldsymbol{S}}_{b}}{2m_b^2}+\frac{{{\boldsymbol{S}}}_{\bar{c}}}{2m_{\bar{c}}^2}\right) \cdot {\boldsymbol{L}}\left(\frac{1}{r}\frac{{\rm d}V_c}{{\rm d}r}+\frac{2}{r}\frac{{\rm d}V_1}{{\rm d}r}\right)\\ &+\frac{{{\boldsymbol{S}}}_+ \cdot {\boldsymbol{L}}}{m_bm_{\bar{c}}}\left(\frac{1}{r} \frac{{\rm d}V_2}{r}\right) +\frac{3{{\boldsymbol{S}}}_{b} \cdot \hat{{\boldsymbol{r}}}{{\boldsymbol{S}}}_{\bar{c}} \cdot \hat{{\boldsymbol{r}}}-{{\boldsymbol{S}}}_{b} \cdot {{\boldsymbol{S}}}_{\bar{c}}}{3m_b m_{\bar{c}}}V_3\\ & +\left[\left(\frac{{{\boldsymbol{S}}}_{b}}{m_b^2}-\frac{{{\boldsymbol{S}}}_{\bar{c}}}{m_{\bar{c}}^2}\right) \cdot {\boldsymbol{L}}+\frac{{{\boldsymbol{S}}}_-}{m_b m_{\bar{c}}} \cdot {\boldsymbol{L}}\right] V_4, \end{aligned} $
(2) where L denotes the orbital angular momentum between beauty charm quarks.
$ {\boldsymbol{S}}_{\pm}={{\boldsymbol{S}}}_b\pm{{\boldsymbol{S}}}_{\bar{c}} $ . The expressions for each potential are as follows:$ \begin{aligned}[b] V_c =\;& -C_F\frac{{\alpha}_s}{r}+br, \\ V_1 =\;& -br-\frac{2}{9\pi}\frac{{\alpha}_s^2}{r}[9{\rm{ln}}(\sqrt{m_b m_{\bar{c}}}r)+9{\gamma}_E-4],\\ V_2 =\;& -C_F\frac{{\alpha}_s}{r}-\frac{1}{9\pi}\frac{{\alpha}_s^2}{r}[-18{\rm{ln}}(\sqrt{m_b m_{\bar{c}}}r)+54{\rm{ln}}(\mu r)\\ &+36{\gamma}_E+29],\\ V_3 =\;& -\frac{4{\alpha}_s}{r^3}-\frac{1}{3\pi}\frac{{\alpha}_s^2}{r^3}[-36{\rm{ln}}(\sqrt{m_b m_{\bar{c}}}r)+54{\rm{ln}}(\mu r)\\ &+18{\gamma}_E+31],\\ V_4 =\;& \frac{1}{\pi}\frac{{\alpha}_s^2}{r^3}{\rm{ln}}\left(\frac{m_{\bar{c}}}{m_b}\right), \end{aligned} $
(3) where
$ \gamma_E $ denots Euler constant. Furthermore, SU(3) color factors are$ C_F=4/3 $ and$ C_A=3 $ . The renormalization scale$ \mu=1 $ GeV is adopted as in Refs. [47−52].The spin operator
$ {\boldsymbol{S}}_{-}={{\boldsymbol{S}}}_b-{{\boldsymbol{S}}}_{\bar{c}} $ can lead to the mixing of the beauty-charm mesons with identical total angular momentum but with different total spins. For example, mixing between$ B_c(n{}^3L_L) $ and$ B_c(n{}^1L_L) $ states occurs, and this can be described by mixing matrix by introducing a mixing angle$ \theta_{nL} $ [14, 53] as follows:$ \begin{equation} \left( \begin{array}{cr} B_{cL}(nL)\\ B^\prime_{cL}(nL) \end{array} \right) =\left( \begin{array}{cr} \cos \theta_{nL} & \sin \theta_{nL} \\ -\sin \theta_{nL} & \cos \theta_{nL} \end{array} \right) \left(\begin{array}{cr} B_c(n^1L_L)\\ B_c(n^3L_L) \end{array} \right), \end{equation} $
(4) where the physical observed states are denoted as
$ B_{cL}(nL) $ and$ B_{cL}^\prime(nL) $ .The mixing angle is determined by the spin-orbit term
$ H_{SL} $ . The term include two parts, symmetric part$ H_{\rm sym} $ and antisymmetric part$ H_{\rm anti} $ . These two parts can be expressed as [48]:$ \begin{aligned}[b] H_{\rm sym} =\;& \frac{{{\boldsymbol{S}}}_+ \cdot {{\boldsymbol{L}}}}{2}\left[\left(\frac{1}{2m_q^2}+\frac{1}{2m_{\bar{q}}^2}\right) \left(\frac{1}{r}\frac{{\rm d}V_c}{{\rm d}r}+\frac{2}{r}\frac{{\rm d}V_1}{{\rm d}r}\right)\right. \\ & \left.+\frac{2}{m_qm_{\bar{q}}}\left(\frac{1}{r} \frac{{\rm d}V_2}{r}\right)+\left(\frac{1}{m_q^2}-\frac{1}{m_{\bar{q}}^2}\right)V_4\right], \end{aligned} $
(5) $ \begin{aligned}[b] H_{\rm anti} =\;& \frac{{{\boldsymbol{S}}}_- \cdot {{\boldsymbol{L}}}}{2}\left[\left(\frac{1}{2m_q^2}-\frac{1}{2m_{\bar{q}}^2}\right) \left(\frac{1}{r}\frac{{\rm d}V_c}{{\rm d}r}+\frac{2}{r}\frac{{\rm d}V_1}{{\rm d}r}\right)\right. \\ & \left.+\left(\frac{1}{m_q^2}+\frac{1}{m_{\bar{q}}^2}+\frac{2}{m_qm_{\bar{q}}}\right)V_4\right]. \end{aligned} $
(6) When the heavy-light mesons have different total spins but with same total angular momentum, the spin-orbit mixing will occur. The mixing angle can be estimated by the antisymmetric part
$H_{\rm anti}$ . Furthermore,$H_{\rm anti}$ provides the influence of non-diagonal terms, and the mixed angle can be extracted via diagonalization, -
The Gaussian expansion method is a high-precision method for solving Schrodinger equation. The method was proposed by E. Hiyama [54]. By using Gaussian basis functions, it can describe accurately short-range correlations and long-range asymptotic behavior and highly oscillatory character of wave functions in bound and scattering states of the systems. The method is widely used to calculate hadron spectrum [27, 55, 56]. For a given two-body Schrodinger equation:
$ \left[-\frac{\hbar^2}{2 \mu} \nabla^2+V(r)-E\right] \psi_{l m}({\bf{r}})=0 , $
(7) where μ denotes the reduced mass and
$ V(r) $ denotes a central potential. The equation can be solved by wave function$ \psi_{l m}({\bf{r}}) $ in terms of a set of Gaussian basis functions,$ \phi_{n l m}^{\rm{G}}({\bf{r}})=\phi_{n l}^{{\rm{G}}}(r) Y_{l m}(\hat{{\bf{r}}}) $ . Furthermore, the functions can be expressed as follows:$ \begin{aligned} & \psi_{l m}({\bf{r}})=\sum_{n=1}^{n_{\max }} c_{n l} \phi_{n l m}^{{\rm{G}}}({\bf{r}}), \end{aligned} $
(8) $ \begin{aligned} & \phi_{n l m}^{{\rm{G}}}({\bf{r}})=\phi_{n l}^{{\rm{G}}}(r) Y_{l m}(\hat{{\bf{r}}}), \end{aligned} $
(9) $ \begin{aligned} & \phi_{n l}^{{\rm{G}}}(r)=N_{n l} r^l {\rm e}^{-\nu_n r^2}, \end{aligned} $
(10) $ \begin{aligned} & N_{n l}=\left(\frac{2^{l+2}\left(2 \nu_n\right)^{l+\frac{3}{2}}}{\sqrt{\pi}(2 l+1)!!}\right)^{{1}/{2}}, \quad\left(n=1-n_{\max }\right). \end{aligned} $
(11) The constant
$ N_{n l} $ is normalization constant, which can be determined by$ \langle\phi_{n l m}^{{\rm{G}}} \mid \phi_{n l m}^{{\rm{G}}}\rangle=1 $ . Hence, set$ \left\{\phi_{n l m}^{{\rm{G}}}; n=1-n_{\max }\right\} $ is a non-orthogonal set. -
The quenched quark potential model only includes the interaction between heavy quark pair. However, the hadronic loop interaction can also play a role via the generation of the light quark pair in
$ b\bar{c}\to (b\bar{q})(q\bar{c}) $ . Furthermore, the hadronic loop interaction becomes more important for the higher excited beauty-charm mesons. The coupled channel framework provides a good description for the hadronic loop interactions.In this framework, the beauty-charm meson state can be expressed as:
$ |\psi\rangle = \left(\begin{array}{cc} c_0 |\psi_0\rangle \\ \sum_{BD} \int {\rm d}^3p\, c_{BD}(p) |BD;p\rangle \end{array}\right), $
(12) where
$ c_0 $ denotes the$ b\bar{c} $ bare state probability amplitude, while$ c_{BD}(p) $ denotes the beauty meson B and charm meson D molecular component probability amplitude with relative momentum p. To normalize the state, we impose the condition$|c_0|^2+\sum_{BD} \int {\rm d}^3p\, |c_{BD}(p)|^2=1$ .The total Hamiltonian in coupled channel framework can be expressed as:
$ H = \left(\begin{array}{cc} H_Q & H_I \\ H_I & H_{BD} \end{array}\right), $
(13) where
$ H_{BD} $ denotes the Hamiltonian for beauty meson B and charm meson D system as:$ H_{BD} = E_{BD} =\sqrt{m_B^2 +p^2} + \sqrt{m_D^2 +p^2}. $
(14) $ H_I $ leads to coupling between$ b\bar{c} $ bare state and BD molecule component. In the following, the$ ^3P_0 $ model, where the generated light quark pairs have identical quantum numbers$ J^{PC} = 0^{++} $ in vacuum, is employed to analyze the mixing of$ b\bar{c} $ bare state and BD molecule component [64−66].Then, we solve the spectrum eigen equation as follows:
$ H |\psi\rangle= M |\psi\rangle, $
(15) where
$ M $ denotes the final mass for the beauty-charm mesons in coupled channel framework. Practically, the eigenvalue$ M $ can be rewritten as [29, 30, 32, 34]:$ M = M_Q + \Delta M, $
(16) $ \begin{aligned} \Delta M &= \sum_{BD} \int_0^{\infty} p^2 {\rm d} p \frac{\left|\langle BD;p \right| T^{\text †} \left| \psi_0 \rangle \right|^2}{M - E_{BD} }, \end{aligned} $
(17) where
$ M_Q $ denotes the eigenvalue for the quenched Hamiltonian$ H_Q $ , while$ \Delta M $ denotes the mass shift from the coupled channel effect. Operator$ {T^{\text †} } $ in$ ^3P_0 $ model can be expressed as [29, 32, 34]:$ \begin{aligned}[b] T^{{\text †}}=\;& -3 \, \gamma_0^{\rm eff} \, \int {\rm d} \vec{p}_1 \, {\rm d} \vec{p}_2 \, \delta(\vec{p}_1 + \vec{p}_2) \, C_{12} \, F_{12} \, {\rm e}^{-r_q^2 (\vec{p}_1 - \vec{p}_2)^2/6 }\, \\ & \left[ \chi_{12} \, \times \, {{\mathcal{Y}}}_{1}(\vec{p}_1 - \vec{p}_2) \right]^{(0)}_0 \, b_1^{{\text †}}(\vec{p}_1) \, d_2^{{\text †}}(\vec{p}_2) \; , \end{aligned} $
(18) where operators
$b_1^{{\text †}}(\vec{p}_1)$ and$d_2^{{\text †}}(\vec{p}_2)$ create a light quark pair. The light quark pair creation strength is denoted as$\gamma_0^{\rm eff}=\dfrac{m_u}{m_i}\gamma_0$ with$ \gamma_0=0.4 $ and$ i=u, d, s $ [7]. The color, flavor, and spin wave functions for the light quark pair are$ C_{34} $ ,$ F_{34} $ , and$ \chi_{34} $ , respectively. Furthermore,$ r_q $ denotes a width parameter of Gaussian factor, whose value is determined by analyzing meson decays. The Gaussian factor reflects the effective scale of quark pairs via smearing. This parameter is an improvement of$ ^3P_0 $ model. It is physically motivated and necessary to obtain a finite result when one sums over a complete set of virtual decay channels [67]. The value of$ r_q $ is in the range of$ 0.25 $ to$ 0.35 $ fm [67−70]. We use the value$ r_q = 0.3 $ fm in the following calculation.To weigh the importance of coupled channel effects, it is useful to investigate the probabilities of
$ b\bar{c} $ bare component and BD molecule component in the physical state. The probability of quenched$ b\bar{c} $ bare component can be expressed as:$ \begin{aligned}[b] P_{b\bar{c}} \equiv\;& |c_0|^2 \\ =\; &\left(1+\sum\limits_{BD} \displaystyle{\int}_0^{\infty} p^2 {\rm d} p \frac{\left|\langle BD;p \ell J \right| T^{\text †} \left| \psi_0 \rangle \right|^2}{(M - E_{BD})^2}\right)^{-1}. \end{aligned} $
(19) Then, the probability of BD molecule component can be naturally expressed as
$ P_{{\rm{molecule}}}=\sum_{BD}P_{BD}= 1- P_{b\bar{c}} $ . Given that bare state mass is above the BD threshold, it is not possible to normalize the wave functions. Hence, we cannot estimate the proportion of the channel.For highly excited beauty-charm mesons above the BD threshold, they undergo direct two-body decay into a beauty meson and charm meson. The strong decay width is related to the imaginary part in
$ \Delta M $ and can be expressed as:$ \Gamma_{BD} = 2 \pi p_0 \frac{E_B(p_0) E_D(p_0)}{M} \left| \langle BD;p_0\right| T^{\text{†}} \left| \psi_0 \rangle \right|^2 . $
(20) -
Given that only
$ B_c $ mesons have experimental information, it is difficult to fit all parameters. Hence, we adopt a strategy similar to that in Ref. [7]. Although there are no experimental data for$ B^*_c(1^3S_1) $ and$ B^*_c(2^3S_1) $ masses, their values can be estimated as approximately$ 6334 $ and$ 6900 $ MeV, respectively. Furthermore, given that the hyperfine mass splitting in bottomonium family is measured as$ \Delta M_{b\bar{b}(1S)}=62.3\pm 3.2 $ MeV and$ \Delta M_{b\bar{b}(2S)}=24\pm4 $ MeV [1], the hyperfine mass splitting in beauty-charm meson family is considered as small as$m_{B_c^*}-m_{B_c}\geq \Delta M_{b\bar{b}(1S)}=62.3\pm 3.2$ MeV and$m_{B_c^*(2S)}-m_{B_c(2S)}\geq \Delta M_{b\bar{b}(2S)}= 24\pm4$ MeV because the hyperfine mass splitting is inversely proportional to the heavy quark mass. Based on experimental results and theoretical discussions, we have four data points$ B_c(1^1S_0) $ ,$ B_c^*(1^3S_1) $ ,$ B_c(2^1S_0) $ , and$ B_c^*(2^3S_1) $ with masses 6274, 6334, 6871, and 6900 MeV, respectively. We use these values to fit the model parameters$ \alpha_s $ ,$ b $ ,$ \sigma $ . For the other parameters in the model, we use commonly used values, which can describe other mesons well [7, 47, 49]. It should be noted that we do not fit all parameters in the model due to the lack of sufficient experimental data for fitting. The final refitted parameters are listed in Table 1.Parameter This work $ m_n $ $ 0.45 $ GeV$ m_s $ $ 0.55 $ GeV$ m_c $ $ 1.43 $ GeV$ m_b $ $ 4.5 $ GeV$ \alpha_s $ $ 0.51851 $ b $ 0.16178 $ GeV2σ $ 1.3424 $ GeV$ C_{b\bar{c}} $ $ 0.454 $ GeV$ \gamma_0 $ $ 0.4 $ Table 1. Parameters refitted in this study.
With the parameters in Table 1, the mass spectrum and mass shifts of the
$ B_c $ mesons can be estimated. The results are shown in Fig. 1, with numbers listed in Table 2 and Table 3. The mixing angles of$ 1P $ ,$ 2P $ ,$ 1D $ , and$ 2D $ states can be also calculated, which are$ -35.0^\circ $ ,$ -36.3^\circ $ ,$ -42.8^\circ $ and$ -43.9^\circ $ , respectively. The mixing angles are close to$ B $ mesons$\theta_{1P}=-34.6^\circ$ ,$ \theta_{2P}=-36.1^\circ $ ,$\theta_{1D}= -39.6^\circ$ ,$ \theta_{2D}=-39.7^\circ $ and$ B_s $ mesons$\theta_{1P}= -34.9^\circ$ ,$ \theta_{2P}=-36.1^\circ $ ,$ \theta_{1D}=-39.8^\circ $ , and$ \theta_{2D}=-39.8^\circ $ [48].Figure 1. (color online) Beauty-charm meson family spectrum. "Exp." denotes the current experimental values from the latest PDG [1] and our quenched quark model results are depicted as "Ours". The unquenched quark model results from Ref. [14] are shown as "GI". The Lattice results from Ref. [63] are shown as "Latt.". The dashed lines denote the threshold positions of BD and
$ B_sD_s $ , respectively.$ n^{2S+1}L_J $ State $ M_0 $ $ \Delta M $ $ M $ EPI [57] EMK [58] MAS [59] RR [60] QL [7] GI [61] XJL [12] DE [62] APM [10] RPP [1] $ 1^1S_0 $ $ B_c^+ $ $ 6337 $ $ -65 $ $ 6272 $ 6274 6277 6277 6277 6271 6271 6271 6270 6275 $ 6274.47\pm0.32 $ $ 1^3S_1 $ $ - $ $ 6405 $ $ -70 $ $ 6335 $ $ - $ $ - $ $ - $ $ - $ 6326 6338 6338 6332 6314 $ 6331\pm4\pm6 $ a$ 2^1S_0 $ $ B_c(2S)^\pm $ $ 6989 $ $ -114 $ $ 6874 $ 6845 7038 7383 6814 6871 6855 6855 6835 6838 $ 6871.2\pm1.0 $ $ 2^3S_1 $ $ - $ $ 7013 $ $ -116 $ $ 6897 $ $ - $ $ - $ $ - $ $ - $ 6890 6887 6886 6881 6850 $ - $ $ 3^1S_0 $ $ - $ $ 7393 $ $ -141 $ $ 7252 $ 7124 7798 7206 7351 7239 7250 7220 7193 $ - $ $ - $ $ 3^3S_1 $ $ - $ $ 7410 $ $ -129 $ $ 7281 $ $ - $ $ - $ $ - $ $ - $ 7252 7272 7240 7235 $ - $ $ - $ $ 1^3P_0 $ $ - $ $ 6803 $ $ -98 $ $ 6706 $ 6519 7799 7042 6340 6714 6706 6701 6699 6672 $ - $ $ 1P $ $ - $ $ 6852 $ $ -102 $ $ 6750 $ $ - $ $ - $ $ - $ $ - $ 6757 6741 6745 6734 6766 $ - $ $ 1P^\prime $ $ - $ $ 6887 $ $ -102 $ $ 6785 $ $ - $ $ - $ $ - $ $ - $ 6776 6750 6754 6749 6828 $ - $ $ 1^3P_2 $ $ - $ $ 6906 $ $ -104 $ $ 6802 $ $ - $ $ - $ $ - $ $ - $ 6787 6768 6773 6762 6776 $ - $ $ 2^3P_0 $ $ - $ $ 7226 $ $ -127 $ $ 7099 $ 6959 $ - $ 6663 6851 7107 7122 7097 7091 6914 $ - $ $ 2P $ $ - $ $ 7264 $ $ -136 $ $ 7128 $ $ - $ $ - $ $ - $ $ - $ 7134 7145 7125 7126 7259 $ - $ $ 2P^\prime $ $ - $ $ 7300 $ $ -135 $ $ 7165 $ $ - $ $ - $ $ - $ $ - $ 7150 7150 7133 7145 7322 $ - $ $ 2^3P_2 $ $ - $ $ 7316 $ $ -144 $ $ 7172 $ $ - $ $ - $ $ - $ $ - $ 7160 7164 7148 7156 7232 $ - $ $ 1^3D_1 $ $ - $ $ 7147 $ $ -124 $ $ 7023 $ 6813 $ - $ $ - $ $ - $ 7020 7041 7023 7072 7078 $ - $ $ 1D $ $ - $ $ 7154 $ $ -121 $ $ 7033 $ $ - $ $ - $ $ - $ $ - $ 7024 7028 7032 7077 7009 $ - $ $ 1D^\prime $ $ - $ $ 7163 $ $ -122 $ $ 7041 $ $ - $ $ - $ $ - $ $ - $ 7032 7036 7039 7079 7154 $ - $ $ 1^3D_3 $ $ - $ $ 7163 $ $ -120 $ $ 7043 $ $ - $ $ - $ $ - $ $ - $ 7030 7045 7042 7081 6980 $ - $ $ 2^3D_1 $ $ - $ $ 7496 $ $ -136 $ $ 7360 $ $ - $ $ - $ $ - $ $ - $ 7336 $ - $ 7327 $ - $ $ - $ $ - $ $ 2D $ $ - $ $ 7505 $ $ -150 $ $ 7355 $ $ - $ $ - $ $ - $ $ - $ 7343 $ - $ 7335 $ - $ $ - $ $ - $ $ 2D^\prime $ $ - $ $ 7509 $ $ -130 $ $ 7380 $ $ - $ $ - $ $ - $ $ - $ 7347 $ - $ 7340 $ - $ $ - $ $ - $ $ 2^3D_3 $ $ - $ $ 7514 $ $ -175 $ $ 7338 $ $ - $ $ - $ $ - $ $ - $ 7348 $ - $ 7344 $ - $ $ - $ $ - $ aThis result is from Lattice QCD simulation [63]. Combing LHCb data and Lattice QCD result, the mass of $ B_c^*(2^3S_1) $ is determined as$ 6897\pm 12 $ MeV.Table 2. Beauty charm meson family spectrum (in MeV). The third column denotes the naive mass in quenched quark model; the fourth column denotes the mass shift from coupled channel effects; the fifth column denotes the final results for the beauty charm meson family spectrum; the last column is the latest experimental data [1]. For comparison, other theoretical predictions from quenched quark models are also listed. The mixing angles of
$ 1P $ ,$ 2P $ ,$ 1D $ , and$ 2D $ are detemined as$ -35.0^\circ $ ,$ -36.3^\circ $ ,$ -42.8^\circ $ and$ -43.9^\circ $ , respectively.The spectra of
$ B_c $ mesons have been examined in many studies [7, 10, 12, 57−62, 71]. We listed their results in Table 2. It can be observed that different theoretical models predict the mass of$ B_c^+(1^1S_0) $ in accordance with experimental results. For state$ B_c(2S)^{\pm} $ , the predicted mass corresponds to 6845 MeV via exact quantization rule approach [57], 6814 MeV via asymptotic iteration method [60], 6871 MeV via nonrelativistic quark model [7], and 6855 MeV via relativistic quark model [61]. These values are consistent with experimental data value of$ 6871.2\pm1.0 $ MeV. However, the given mass values of 7038 MeV via analytical exact iteration method [58], 7383 MeV via non-relativistic quark model using Nikiforov-Uvarov method [59], and 6814 MeV via asymptotic iteration method [60] deviate significantly from the experimental results. These theoretical studies have enriched our understanding of the properties of$ B_c $ mesons. However, due to the limited experimental information on$ B_c $ mesons, there are still significant differences in the theoretical research results. Further experimental data is required to enhance and optimize theoretical understanding.We predicted that the masses of
$ B_c(1^1S_0) $ and$ B_c(2^1S_0) $ are 6272 and 6874 MeV, respectively, which are close to the experimental values of$ 6274.47\pm0.32 $ MeV and$ 6871.2\pm1.0 $ MeV. Furthermore, we show the theoretical results of the other states in beauty-charm meson family. We expect that more experimental information can be found to support our results.For states below BD threshold, the probabilities of each coupled channel can be estimated. The probabilities are listed in Table 4. Hence, all the states have coupled channel components. Specifically, when comparing
$ 1S $ ,$ 2S $ ,$ 1P $ , and the$ 1D $ states, the$ 2P $ states have larger non-$ b\bar c $ components. For$ 1S $ -wave states, we predicted they have 96%$ b\bar c $ components. This implies that the coupled channel components is just 4%. For other states, we predicted$ b\bar c $ component probabilities for$ 2S $ ,$ 1P $ ,$ 2P $ , and$ 1D $ states, which are approximately 86%, 90%, 67%, and 84%, respectively.State BD $ BD^* $ $ B^*D $ $ B^*D^* $ $ B_sD_s $ $ B_sD_s^* $ $ B_s^*D_s $ $ B_s^*D_s^* $ $P_{\rm molecule}$ $ P_{b\bar c} $ $ 1^1S_0 $ $ 0 $ $ 0.7 $ $ 0.8 $ $ 1.4 $ $ 0 $ $ 0.2 $ $ 0.2 $ $ 0.4 $ $ 3.7 $ $ 96.3 $ $ 1^3S_1 $ $ 0.3 $ $ 0.5 $ $ 0.6 $ $ 1.8 $ $ 0.1 $ $ 0.1 $ $ 0.2 $ $ 0.5 $ $ 4.3 $ $ 95.7 $ $ 2^1S_0 $ $ 0 $ $ 2.8 $ $ 3.9 $ $ 5.1 $ $ 0 $ $ 0.5 $ $ 0.7 $ $ 1.1 $ $ 14.0 $ $ 86.0 $ $ 2^3S_1 $ $ 1.6 $ $ 1.9 $ $ 2.7 $ $ 6.2 $ $ 0.2 $ $ 0.4 $ $ 0.5 $ $ 1.3 $ $ 14.8 $ $ 85.2 $ $ 1^3P_0 $ $ 1.8 $ $ 0 $ $ 0 $ $ 5.1 $ $ 0.4 $ $ 0 $ $ 0 $ $ 1.3 $ $ 8.6 $ $ 91.4 $ $ 1^1P_1 $ $ 0 $ $ 1.8 $ $ 2.4 $ $ 3.5 $ $ 0 $ $ 0.4 $ $ 0.5 $ $ 0.9 $ $ 9.6 $ $ 90.4 $ $ 1^3P_1 $ $ 0 $ $ 1.6 $ $ 2.1 $ $ 4.0 $ $ 0 $ $ 0.4 $ $ 0.4 $ $ 1.0 $ $ 9.5 $ $ 90.5 $ $ 1^3P_2 $ $ 1.2 $ $ 1.3 $ $ 1.7 $ $ 4.1 $ $ 0.3 $ $ 0.3 $ $ 0.4 $ $ 1.0 $ $ 10.2 $ $ 89.8 $ $ 2^3P_0 $ $ 22.5 $ $ 0 $ $ 0 $ $ 9.0 $ $ 0.7 $ $ 0 $ $ 0 $ $ 1.4 $ $ 33.7 $ $ 66.3 $ $ 2^1P_1 $ $ 0 $ $ 5.3 $ $ 16.7 $ $ 8.4 $ $ 0 $ $ 0.6 $ $ 0.8 $ $ 1.1 $ $ 32.9 $ $ 67.1 $ $ 2^3P_1 $ $ 0 $ $ 5.3 $ $ 18.3 $ $ 7.5 $ $ 0 $ $ 0.5 $ $ 0.7 $ $ 1.1 $ $ 33.4 $ $ 66.6 $ $ 1^3D_1 $ $ 4.3 $ $ 0.9 $ $ 1.5 $ $ 8.0 $ $ 0.4 $ $ 0.1 $ $ 0.2 $ $ 1.7 $ $ 17.1 $ $ 82.9 $ $ 1^1D_2 $ $ 0 $ $ 3.2 $ $ 4.7 $ $ 5.8 $ $ 0 $ $ 0.6 $ $ 0.7 $ $ 1.1 $ $ 16.2 $ $ 83.8 $ $ 1^3D_2 $ $ 0 $ $ 3.1 $ $ 4.8 $ $ 6.1 $ $ 0 $ $ 0.5 $ $ 0.7 $ $ 1.2 $ $ 16.4 $ $ 83.6 $ $ 1^3D_3 $ $ 2.2 $ $ 2.0 $ $ 2.6 $ $ 6.6 $ $ 0.4 $ $ 0.4 $ $ 0.5 $ $ 1.2 $ $ 15.9 $ $ 84.1 $ Table 4. Two quark and molecule probabilities (in %) in the coupled channels framework.
State BD $ BD^* $ $ B^*D $ $ B^*D^* $ $ B_sD_s $ $ B_sD_s^* $ $ B_s^*D_s $ $ B_s^*D_s^* $ Total $ 1^1S_0 $ $ 0 $ $ -13 $ $ -11 $ $ -25 $ $ 0 $ $ -4 $ $ -4 $ $ -9 $ $ -65 $ $ 1^3S_1 $ $ -4 $ $ -9 $ $ -8 $ $ -31 $ $ -1 $ $ -3 $ $ -3 $ $ -11 $ $ -70 $ $ 2^1S_0 $ $ 0 $ $ -23 $ $ -23 $ $ -44 $ $ 0 $ $ -6 $ $ -6 $ $ -12 $ $ -114 $ $ 2^3S_1 $ $ -8 $ $ -15 $ $ -16 $ $ -52 $ $ -2 $ $ -4 $ $ -4 $ $ -14 $ $ -116 $ $ 3^1S_0 $ $ 0 $ $ -36 $ $ -23 $ $ -60 $ $ 0 $ $ -6 $ $ -6 $ $ -11 $ $ -142 $ $ 3^3S_1 $ $ 3 $ $ -32 $ $ 1 $ $ -79 $ $ -2 $ $ -4 $ $ -4 $ $ -13 $ $ -130 $ $ 1^3P_0 $ $ -12 $ $ 0 $ $ 0 $ $ -63 $ $ -3 $ $ 0 $ $ 0 $ $-20$ $-98$ $ 1P $ $ 0 $ $ -20 $ $ -19 $ $ -39 $ $ 0 $ $ -6 $ $ -6 $ $ -12 $ $ -102 $ $ 1P^\prime $ $ 0 $ $ -16 $ $ -15 $ $ -47 $ $ 0 $ $ -5 $ $ -4 $ $ -15 $ $ -102 $ $ 1^3P_2 $ $ -10 $ $ -15 $ $ -14 $ $ -42 $ $ -3 $ $ -5 $ $ -4 $ $ -13 $ $ -104 $ $ 2^3P_0 $ $ -33 $ $ 0 $ $ 0 $ $ -72 $ $ -4 $ $ 0 $ $ 0 $ $ -18 $ $ -127 $ $ 2P $ $ 0 $ $ -27 $ $ -34 $ $ -51 $ $ 0 $ $ -6 $ $ -6 $ $ -12 $ $ -136 $ $ 2P^\prime $ $ 0 $ $ -24 $ $ -33 $ $ -54 $ $ 0 $ $ -5 $ $ -5 $ $ -13 $ $ -135 $ $ 2^3P_2 $ $ -19 $ $ -18 $ $ -21 $ $ -61 $ $ -3 $ $ -4 $ $ -4 $ $ -13 $ $ -143 $ $ 1^3D_1 $ $ -13 $ $ -5 $ $ -6 $ $ -75 $ $ -3 $ $ -1 $ $ -1 $ $ -21 $ $ -124 $ $ 1D $ $ 0 $ $ -24 $ $ -25 $ $ -47 $ $ 0 $ $ -6 $ $ -6 $ $ -13 $ $ -121 $ $ 1D^\prime $ $ 0 $ $ -21 $ $ -22 $ $ -54 $ $ 0 $ $ -5 $ $ -5 $ $ -15 $ $ -122 $ $ 1^3D_3 $ $ -13 $ $ -18 $ $ -17 $ $ -47 $ $ -3 $ $ -5 $ $ -4 $ $ -12 $ $ -120 $ $ 2^3D_1 $ $ -7 $ $ 0 $ $ 1 $ $ -104 $ $ -6 $ $ -1 $ $ -2 $ $ -17 $ $ -136 $ $ 2D $ $ 0 $ $ -28 $ $ -17 $ $ -83 $ $ 0 $ $ -6 $ $ -6 $ $ -11 $ $ -150 $ $ 2D^\prime $ $ 0 $ $ -13 $ $ -12 $ $ -79 $ $ 0 $ $ -5 $ $ -7 $ $ -12 $ $ -130 $ $ 2^3D_3 $ $ -10 $ $ -23 $ $ -20 $ $ -102 $ $ -3 $ $ -4 $ $ -4 $ $ -11 $ $ -175 $ Table 3. Mass shift
$ \Delta M $ (in MeV) for beauty charm mesons from different channels.For states, which have large masses, the strong decay channels will be open, and strong decay widths are shown in Table 5. For
$ 1S $ -wave,$ 2S $ -wave, and$ 1P $ -wave, most of$ 2P $ -wave and$ 1D $ -wave states, their masses are below the BD threshold and cannot undergo strong decay into BD states. Hence, we just discuss the strong decay of the$ B_c(2^3P_2) $ ,$ 3S $ -wave, and$ 2D $ -wave$ B_c $ mesons. For$ B_c(2^3P_2) $ , it can just decay to BD final states with decay width of approximately 3 MeV. For$ 3S $ -wave states,$ B_c(3^1S_0) $ can strong decay to$ B^*D $ with predicted width of 109 MeV, while the$ B_c(3^3S_1) $ can strong decay to BD and$ B^*D $ with predicted width 10 and 57 MeV, whose total decay width becomes 67 MeV. For the$ 2D $ -wave states, the total decay widths of the$ B_c(2^3D_1) $ ,$ B_c(2D) $ ,$ B_c(2D^\prime) $ , and$ 2^3D_3 $ states are$ 60 $ ,$ 57 $ ,$ 201 $ , and$ 76 $ MeV, respectively. The$ B_c(2^3D_1) $ dominantly decay into$ BD^* $ and$ B^*D^* $ with predicted widths of$ 28 $ and$ 22 $ MeV. The$ B_c(2D) $ can mainly decay into$ BD^* $ and$ B^*D^* $ with predicted widths of$ 15 $ and$ 37 $ MeV. Furthermore, the$ B_c(2D^\prime) $ can mainly decay into$ BD^* $ ,$ B^*D $ , and$ B^*D^* $ with predicted widths of$ 64 $ ,$ 69 $ , and$ 68 $ MeV. The mixing angle of the two states is$ -43.9^\circ $ . Furthermore,$ B_c(2^3D_3) $ have three major decay channels of BD,$ B^*D $ , and$ B^*D^* $ with a decay width of$ 27 $ ,$ 30 $ and$ 15 $ MeV, respectively. These differences in decays will aid in distinguishing these excited beauty-charm meson states.State BD $ BD^* $ $ B^*D $ $ B^*D^* $ $ B_sD_s $ $ B_sD_s^* $ $ B_s^*D_s $ $ B_s^*D_s^* $ Total $ 3^1S_0 $ $ 0 $ $ 0 $ $ 109 $ $ 0 $ $ 0 $ $ 0 $ $ 0 $ $ 0 $ $ 109 $ $ 3^3S_1 $ $ 10 $ $ 0 $ $ 57 $ $ 0 $ $ 0 $ $ 0 $ $ 0 $ $ 0 $ $ 67 $ $ 2^3P_2 $ $ 3 $ $ 0 $ $ 0 $ $ 0 $ $ 0 $ $ 0 $ $ 0 $ $ 0 $ $ 3 $ $ 2^3D_1 $ $ 2 $ $ 28 $ $ 1 $ $ 22 $ $ 7 $ $ 0 $ $ 0 $ $ 0 $ $ 60 $ $ 2D $ $ 0 $ $ 15 $ $ 4 $ $ 37 $ $ 0 $ $ 0 $ $ 0 $ $ 0 $ $ 57 $ $ 2D^\prime $ $ 0 $ $ 64 $ $ 69 $ $ 68 $ $ 0 $ $ 0 $ $ 0 $ $ 0 $ $ 201 $ $ 2^3D_3 $ $ 27 $ $ 4 $ $ 30 $ $ 15 $ $ 0 $ $ 0 $ $ 0 $ $ 0 $ $ 76 $ Table 5. Hadronic decay widths (in MeV) of the beauty-charm mesons.
Beauty-charm meson family with coupled channel effects and their strong decays
- Received Date: 2024-06-03
- Available Online: 2024-12-15
Abstract: We systematically examined the mass spectra and their two-body hadronic decays of the beauty-charm meson family considering coupled channel effects. Our results can effectively explain the observed