Thermal Freeze-Out and Longitudinally Non-uniform Collective Expansion Flow in Relativistic Heavy Ion Collisions
- Received Date: 2002-01-30
- Accepted Date: 1900-01-01
- Available Online: 2002-12-05
Abstract: The non-uniform longitudinal flow model (NUFM) proposed recently is extended to include also the transverse flow. The resulting longitudinally non-uniform collective expansion model (NUCEM) is applied to the calculation of rapidity distribution of kaons, lambdas and protons in relativistic heavy ion collisions at CERN-SPS energies. The model results are compared with the 200A GeV/c S-S and 158 A GeV/c Pb-Pb collision data. The central dips observed in experiments are reproduced in a natural way. ;It is found that the depth of the central dip depends on the magnitude of the parameter e and the mass of produced particles, i.e. the non-uniformity of the longitudinal flow which is described by the parameter e determines the depth of the central dip for produced particles. Comparing with one-dimensional non-uniform longitudinal flow model, the rapidity distribution of lighter strange particle kaon also shows a dip due to the effect of transverse flow.