×
近期发现有不法分子冒充我刊与作者联系,借此进行欺诈等不法行为,请广大作者加以鉴别,如遇诈骗行为,请第一时间与我刊编辑部联系确认(《中国物理C》(英文)编辑部电话:010-88235947,010-88236950),并作报警处理。
本刊再次郑重声明:
(1)本刊官方网址为cpc.ihep.ac.cn和https://iopscience.iop.org/journal/1674-1137
(2)本刊采编系统作者中心是投稿的唯一路径,该系统为ScholarOne远程稿件采编系统,仅在本刊投稿网网址(https://mc03.manuscriptcentral.com/cpc)设有登录入口。本刊不接受其他方式的投稿,如打印稿投稿、E-mail信箱投稿等,若以此种方式接收投稿均为假冒。
(3)所有投稿均需经过严格的同行评议、编辑加工后方可发表,本刊不存在所谓的“编辑部内部征稿”。如果有人以“编辑部内部人员”名义帮助作者发稿,并收取发表费用,均为假冒。
                  
《中国物理C》(英文)编辑部
2024年10月30日

Antibunching Effect of Eigenstates of the Operator bQ-K in a Q-Deformed Non-harmonic Oscillator

  • We introduce a quantum antibunching effect. The quantum antibunching effect of the K eigenstates of the K th powere (K≥3) of the annihilation operator in the Q-deformed non-harmonic oscillator is investigated. The physical meaning of the K states are explored. The results show that there is the quantum antibunching effect in all of those states. All of them can be generated by a linear superposition of generalized coherent states produced by the time-dependent Q-deformation non-harmonic oscillator at different instants.
  • 加载中
  • [1] . Teich M C , Saleh B E A , Stoler D. Opt. Commun.,1983,46:2442. GUO Guang-Can,WANG Shan-Xiang, FAN Hong-Yi. Chin. J. Quant. Electron.,1987,4:1(in Chinese)(郭光灿,王善祥,范洪义.量子电子学,1987,4:1)3. PENG Shi-An, GUO Guang-Can. Acta Physica Sinica, 1990, 39:51(in Chinese)(彭石安,郭光灿.物理学报,1990,39:51)4. Chaichian M, Ellnias D et al. Phys. Rev. Lett.,1990,65:980 5. Bonatsos D, Daskaloyannis C. Phys. Lett.,1992,B278:1 6. WANG Ji-Suo, LIU Tang-Kun, ZHAN Ming-Sheng. High Energy Phys. and Nucl. Phys.,2000,24:1115(in Chinese)(王继锁,刘堂昆,詹明生.高能物理与核物理,2000,24:1115) 7. XU Zi-Wen. Acta Physica Sinica, 1996, 45:1807(in Chinese)(徐子馼.物理学报,1996,45:1807) 8. YU Zhao-Xian, WANG Ji-Suo et al. Acta Physica Sinica, 1997, 46:1693(in Chinese)(于肇贤,王继锁等.物理学报,1997,46:1693)9. XU Zi-Wen. High Energy Phys. and Nucl. Phys.,1999,23:436(in Chinese)(徐子馼.高能物理与核物理,1999,23:436)10. Walls D F. Nature, 1983,306:14111. GUO Guang-Can. Quantum Optics. Beijing:Higher Education Press, 1990,130(in Chinese)(郭光灿.量子光学.北京:高等教育出版社,1990,130)
  • 加载中

Get Citation
WANG Ji-Suo, FENG Jian, LIU Tang-Kun and ZHAN Ming-Sheng. Antibunching Effect of Eigenstates of the Operator bQ-K in a Q-Deformed Non-harmonic Oscillator[J]. Chinese Physics C, 2002, 26(6): 569-575.
WANG Ji-Suo, FENG Jian, LIU Tang-Kun and ZHAN Ming-Sheng. Antibunching Effect of Eigenstates of the Operator bQ-K in a Q-Deformed Non-harmonic Oscillator[J]. Chinese Physics C, 2002, 26(6): 569-575. shu
Milestone
Received: 2001-08-13
Revised: 1900-01-01
Article Metric

Article Views(3077)
PDF Downloads(572)
Cited by(0)
Policy on re-use
To reuse of subscription content published by CPC, the users need to request permission from CPC, unless the content was published under an Open Access license which automatically permits that type of reuse.
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Email This Article

Title:
Email:

Antibunching Effect of Eigenstates of the Operator bQ-K in a Q-Deformed Non-harmonic Oscillator

    Corresponding author: WANG Ji-Suo,
  • State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, The Chinese Academy of Sciences, Wuhan 430071, China2 Department of Physics, Liaocheng Teachers University, Shandong 252059, China3 Department of Physics, Hubei Normal University, Huangshi 435002, China

Abstract: We introduce a quantum antibunching effect. The quantum antibunching effect of the K eigenstates of the K th powere (K≥3) of the annihilation operator in the Q-deformed non-harmonic oscillator is investigated. The physical meaning of the K states are explored. The results show that there is the quantum antibunching effect in all of those states. All of them can be generated by a linear superposition of generalized coherent states produced by the time-dependent Q-deformation non-harmonic oscillator at different instants.

    HTML

Reference (1)

目录

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return