×
近期发现有不法分子冒充我刊与作者联系,借此进行欺诈等不法行为,请广大作者加以鉴别,如遇诈骗行为,请第一时间与我刊编辑部联系确认(《中国物理C》(英文)编辑部电话:010-88235947,010-88236950),并作报警处理。
本刊再次郑重声明:
(1)本刊官方网址为cpc.ihep.ac.cn和https://iopscience.iop.org/journal/1674-1137
(2)本刊采编系统作者中心是投稿的唯一路径,该系统为ScholarOne远程稿件采编系统,仅在本刊投稿网网址(https://mc03.manuscriptcentral.com/cpc)设有登录入口。本刊不接受其他方式的投稿,如打印稿投稿、E-mail信箱投稿等,若以此种方式接收投稿均为假冒。
(3)所有投稿均需经过严格的同行评议、编辑加工后方可发表,本刊不存在所谓的“编辑部内部征稿”。如果有人以“编辑部内部人员”名义帮助作者发稿,并收取发表费用,均为假冒。
                  
《中国物理C》(英文)编辑部
2024年10月30日

Global Symmetry in Phase-Space Path Integral for a System With a Singular Lagrangian

  • Based on the phase-space generating functional of a system with a singular Lagrangion,the Ward identities under global transformation in phase are deduced.The quantum conservation laws under the global symmetry transiormation are also derived which is in general different from classical Hoether's ones.The preliminary application of our formulation to the Yang-Mills theory the Ward-Takahashi identity and BRS conserved quantity for BRS transformation are presented.Applying to non-Abelian-Chern-Simons theory the quantum conserved angular momentum (QCAM) are obtained.The QCAM differs form classical one because the former needs to take into account the distribution of angular momentum of ghost innon-Abelian-Chern-Simons theory.
  • 加载中
  • [1] 李子平, 经典和量子约束系统及其对称性质, 北京工业大学出版社, 北京, 1993年.[2] L. D. Faddeev, Theor. Math. Phys., 1(1970)1.[3] P. Senjanovic, Ann. Phys., (NY), 100 (1976)227.[4] D. M. Gitman, I. V. Tyutin, Quantization of Fields with Constraints, Springer-Verlag, Berlin, 1991.[5] M. Henneaux, Phys. Reports, 126(1985) 1.[6] M. Hemeaux, C. Teilboim, Quantization of Gauge System, Princeton University Press, 1992.[7] H. Suura, B. L. Young, Phys. Rev., D8 (1973) 875.[8] B. L. Young, Introduction to Quantum Field Theories, Science Press, Beijing, 1987.[9] M. M. Mizrahi, J. Math. Phys., 19 (19781298.[10] T-I. Nishikawa, Phys. Lett., B309 (19931351.[11] 李子平, 高能物理与核物理, 18(1994)697.[12] Ziping Li, Int. J. Theor. Phys., 34 (1995)523.[13] W. Siegel, Phys. Lett., B128( 1983)397.[14] 李子平, 物理学报, 41 (1992)710.[15] K. Sundermeyer, Constrained Dynamics, Lecture Notes in Physics, 169, Springer-Verlag, Berlin, 1982.[16] A. Foussats. E. Manavella, C. Repetto et al., Int. J. Theor. Phys., 34(1995)1037.[17] R. Banerjee, Phys. Rev, D48 (1993) 2905; Nucl. Phys., B419(1994)611.[18] J. K. Kim, W-T. Kim, H. Shin , J. Phys., A: Math. Gen., 27(1994)6067.[19] A. Lerda, Anyons, Springer-Verlag, Berlin, 1992.
  • 加载中

Get Citation
Li Ziping. Global Symmetry in Phase-Space Path Integral for a System With a Singular Lagrangian[J]. Chinese Physics C, 1997, 21(1): 34-43.
Li Ziping. Global Symmetry in Phase-Space Path Integral for a System With a Singular Lagrangian[J]. Chinese Physics C, 1997, 21(1): 34-43. shu
Milestone
Received: 1900-01-01
Revised: 1900-01-01
Article Metric

Article Views(2998)
PDF Downloads(545)
Cited by(0)
Policy on re-use
To reuse of subscription content published by CPC, the users need to request permission from CPC, unless the content was published under an Open Access license which automatically permits that type of reuse.
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Email This Article

Title:
Email:

Global Symmetry in Phase-Space Path Integral for a System With a Singular Lagrangian

    Corresponding author: Li Ziping,
  • Department of Applied Physics,Beijing Polytechnic University,Beijing 100022

Abstract: Based on the phase-space generating functional of a system with a singular Lagrangion,the Ward identities under global transformation in phase are deduced.The quantum conservation laws under the global symmetry transiormation are also derived which is in general different from classical Hoether's ones.The preliminary application of our formulation to the Yang-Mills theory the Ward-Takahashi identity and BRS conserved quantity for BRS transformation are presented.Applying to non-Abelian-Chern-Simons theory the quantum conserved angular momentum (QCAM) are obtained.The QCAM differs form classical one because the former needs to take into account the distribution of angular momentum of ghost innon-Abelian-Chern-Simons theory.

    HTML

Reference (1)

目录

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return