×
近期发现有不法分子冒充我刊与作者联系,借此进行欺诈等不法行为,请广大作者加以鉴别,如遇诈骗行为,请第一时间与我刊编辑部联系确认(《中国物理C》(英文)编辑部电话:010-88235947,010-88236950),并作报警处理。
本刊再次郑重声明:
(1)本刊官方网址为cpc.ihep.ac.cn和https://iopscience.iop.org/journal/1674-1137
(2)本刊采编系统作者中心是投稿的唯一路径,该系统为ScholarOne远程稿件采编系统,仅在本刊投稿网网址(https://mc03.manuscriptcentral.com/cpc)设有登录入口。本刊不接受其他方式的投稿,如打印稿投稿、E-mail信箱投稿等,若以此种方式接收投稿均为假冒。
(3)所有投稿均需经过严格的同行评议、编辑加工后方可发表,本刊不存在所谓的“编辑部内部征稿”。如果有人以“编辑部内部人员”名义帮助作者发稿,并收取发表费用,均为假冒。
                  
《中国物理C》(英文)编辑部
2024年10月30日

Calculation and Generalization of Non-Adiabatic Geometric Phase of Isotonic Oscillator with Operator Decomposition

  • Operator decomposition approach is used to calculate the non-adiabatic geometric phase of anharmonic oscillator. As an example we focus on isotonic oscillator, a type of anharmonic oscillator. The Aharonov-Anandan phase is derived when we choose base state and the first excitation state as cyclic initial states. Then we generalize our result by choosing three states or more states as cyclic initial states. Finally we give an general formula of Aharonov-Anandan phase for time-independent systems and discuss its applicability.
  • 加载中
  • [1] . Berry M V. Proc. R. Soc. , 1984, A392: 45-572. Berry M V. J. Phys. A: Math. Gen. , 1985, 18: 15-273. Aharonov Y, Anandan J. Phys. Rev. Lett. , 1987, 20: 1593-15964. Moore D J. Phys. Rep. , 1991, 1: 1-435. Galogero F. J. Math. Phys. , 1969, 10: 2191-21966. Zhu D. J. Phys, 1987, A20: 4331-43367. XU Zi-Wen. Acta Physica Sinica, 1996, 45: 1807-1811 (in Chinese)(徐子二物理学报,1996,45:1807-1811)8. CHEN Chang-Yuan, LIU You-Wen. Acta Physica Sinica, 1998, 47:536-541 (in Chinese)(陈昌远,刘友文.物理学报,1998,47:536-541)
  • 加载中

Get Citation
An Nan and YANG Xin-E. Calculation and Generalization of Non-Adiabatic Geometric Phase of Isotonic Oscillator with Operator Decomposition[J]. Chinese Physics C, 2005, 29(4): 350-353.
An Nan and YANG Xin-E. Calculation and Generalization of Non-Adiabatic Geometric Phase of Isotonic Oscillator with Operator Decomposition[J]. Chinese Physics C, 2005, 29(4): 350-353. shu
Milestone
Received: 2004-07-12
Revised: 2004-08-07
Article Metric

Article Views(2861)
PDF Downloads(592)
Cited by(0)
Policy on re-use
To reuse of subscription content published by CPC, the users need to request permission from CPC, unless the content was published under an Open Access license which automatically permits that type of reuse.
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Email This Article

Title:
Email:

Calculation and Generalization of Non-Adiabatic Geometric Phase of Isotonic Oscillator with Operator Decomposition

    Corresponding author: An Nan,
  • Department of physics,School of Science,Tianjin University,Tianjin 300072,China

Abstract: Operator decomposition approach is used to calculate the non-adiabatic geometric phase of anharmonic oscillator. As an example we focus on isotonic oscillator, a type of anharmonic oscillator. The Aharonov-Anandan phase is derived when we choose base state and the first excitation state as cyclic initial states. Then we generalize our result by choosing three states or more states as cyclic initial states. Finally we give an general formula of Aharonov-Anandan phase for time-independent systems and discuss its applicability.

    HTML

Reference (1)

目录

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return