×
近期发现有不法分子冒充我刊与作者联系,借此进行欺诈等不法行为,请广大作者加以鉴别,如遇诈骗行为,请第一时间与我刊编辑部联系确认(《中国物理C》(英文)编辑部电话:010-88235947,010-88236950),并作报警处理。
本刊再次郑重声明:
(1)本刊官方网址为cpc.ihep.ac.cn和https://iopscience.iop.org/journal/1674-1137
(2)本刊采编系统作者中心是投稿的唯一路径,该系统为ScholarOne远程稿件采编系统,仅在本刊投稿网网址(https://mc03.manuscriptcentral.com/cpc)设有登录入口。本刊不接受其他方式的投稿,如打印稿投稿、E-mail信箱投稿等,若以此种方式接收投稿均为假冒。
(3)所有投稿均需经过严格的同行评议、编辑加工后方可发表,本刊不存在所谓的“编辑部内部征稿”。如果有人以“编辑部内部人员”名义帮助作者发稿,并收取发表费用,均为假冒。
                  
《中国物理C》(英文)编辑部
2024年10月30日

ON THE IRREDUCIBLE REPRESENTATIONS OF THE COMPACT SIMPLE LIE GROUPS OF RANK 2(II)

  • In this paper, we analyse the commutation relations of the infinitesimal opera-tors of the group C2 and find that the ten infinitesimal operators of the group canbe written as two mutually commuting sets of angular momentum operators(υ1, υ0,υ=1), (τ1, τ0-1), and one set of dual irreducible tensor operators of rank (1/2 1/2),U±1∕2,±1∕2. By means of their commutation relations, all irreducible representations ofthe group C2 can be easily obtained. In this paper,the matrices corresponding to the irreducible representation (λμ) are given; therefore the irreducible representation (λμ) and its representation space Rλμare completely defined. Besides, a method for calculating the scalar factors ofthe reduction coefficients and the symmetric relations of these factors are also given.As examples, the algebriac formulae of the scalar factors of the reduction coefficientsof (λμ)×(10), (λμ)×(01) and (λμ)×(20) are derived. In the last part of this paper, we define the irreducible tensor operators of thegroup C2 and prove the corresponding Wigner-Eckart Theory.
  • 加载中
  • [1] G.Racah, Group Theory and Spectroscopy, Princeton, 1951.[2] R.E. Behrends et al., Rev. mod. Phys., 34 (1962), 1.[3] A. Salam, Theoretical Physics, p, 173, Viena, (1963).[4] 杨国祯等,北京大学学报(自然科学版),10(1964),269.
  • 加载中

Get Citation
Sun Hong-zhou. ON THE IRREDUCIBLE REPRESENTATIONS OF THE COMPACT SIMPLE LIE GROUPS OF RANK 2(II)[J]. Chinese Physics C, 1980, 4(2): 137-159.
Sun Hong-zhou. ON THE IRREDUCIBLE REPRESENTATIONS OF THE COMPACT SIMPLE LIE GROUPS OF RANK 2(II)[J]. Chinese Physics C, 1980, 4(2): 137-159. shu
Milestone
Received: 1978-12-08
Revised: 1900-01-01
Article Metric

Article Views(1767)
PDF Downloads(257)
Cited by(0)
Policy on re-use
To reuse of subscription content published by CPC, the users need to request permission from CPC, unless the content was published under an Open Access license which automatically permits that type of reuse.
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Email This Article

Title:
Email:

ON THE IRREDUCIBLE REPRESENTATIONS OF THE COMPACT SIMPLE LIE GROUPS OF RANK 2(II)

  • Peking University

Abstract: In this paper, we analyse the commutation relations of the infinitesimal opera-tors of the group C2 and find that the ten infinitesimal operators of the group canbe written as two mutually commuting sets of angular momentum operators(υ1, υ0,υ=1), (τ1, τ0-1), and one set of dual irreducible tensor operators of rank (1/2 1/2),U±1∕2,±1∕2. By means of their commutation relations, all irreducible representations ofthe group C2 can be easily obtained. In this paper,the matrices corresponding to the irreducible representation (λμ) are given; therefore the irreducible representation (λμ) and its representation space Rλμare completely defined. Besides, a method for calculating the scalar factors ofthe reduction coefficients and the symmetric relations of these factors are also given.As examples, the algebriac formulae of the scalar factors of the reduction coefficientsof (λμ)×(10), (λμ)×(01) and (λμ)×(20) are derived. In the last part of this paper, we define the irreducible tensor operators of thegroup C2 and prove the corresponding Wigner-Eckart Theory.

    HTML

Reference (1)

目录

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return