DBHF Approach and Thermodynamic Consistency for Nuclear Matter Calculations

  • Within the framework of Dirac Brueckner-Hartree-Fock (DBHF) approach, we calculate the energy per nucleon, the pressure, the nucleon self-energy and the single-nucleon energy in the nuclear matter by adopting two different covariant representations for T-matrix. We mainly investigate the influence of different covariant representations on the satisfiable extent of the Hugenholtz-Van Hove (HVH) theorem in the nuclear medium in the framework of DBHF. By adopting the two different covariant representations of T-matrix, the predicted nucleon self-energy shows a quite different momentum and density dependence. Different covariant representations affect remarkably the satisfiable extent of the HVH theorem. By adopting the complete pseudo-vector representation of the T-matrix, HVH theorem is largely violated, which is in agreement with the result in the non-relativistic Brueckner-Hartree-Fock approach and reflects the importance of ground state correlations for single nucleon properties in nuclear medium, whereas by using the pseudo-scalar representation, the ground state correlation cannot be shown. It indicates that the complete pseudo-vector presentation is more feasible than the pseudo-scalar one.
  • 加载中
  • [1] . Fuchs C. Lect. Notes. Phys., 2004, 641: 1192. Anastasio M R, Celenza L S, Shakin C M. Phys. Rev. Lett.,1980, 45: 2096; Anastasio M R, Celenza L S, Pong W S etal. Phys. Rep., 1983, 100: 3273. Machleidt R. Adv. Nucl. Phys., 1986, 19: 189; BrockmannR, Machleidt R. Phys. Rev., 1990, C42: 19654. Horowitz C J, Serot B D. Nucl. Phys., 1987, A464: 6135. Haar B T, Maliet R. Phys. Rep., 1987, 149: 207; Phys.Rev. Lett., 1987, 59: 16526. Sehn L, Fuchs C, Faessler A. Phys. Rev., 1997, C56: 2167. Fuchs C et al. Phys. Rev., 1998, C58: 20228. Gross-Boelting T, Fuchs C, Faessler A. Nucl. Phys., 1999,A648: 1059. Jong F D, Lenske H. Phys. Rev., 1998, C58: 89010. Serot B D, Walecka J D. Adv. Nucl. Phys., 1986, 16: 111. MA Z Y, LIU L. Phys. Rev., 2002, C66: 02432112. Tjon J A, Wallace S J. Phys. Rev., 1985, C32: 26713. Hugenholtz N M, Hove L V. Physica (Amsterdam), 1958,24: 36314. ZUO W, Bombaci I, Lombardo U. Phys. Rev., 1999, C60:024605; ZUO W, Lombardo U, LI Z H et al. HEP NP, 2003, 27: 31(in Chinese)(左维, Lombardo U, 李增花等. 高能物理与核物理, 2003, 27: 31)15. Salpeter E E, Bethe H A. Phys. Rev., 1951, 84: 123216. Brown G E, Weise W, Baym G et al. Comments Nucl. Phys., 1987, 17: 3917. ZUO W, Lejeune A, Lombardo U et al. Nucl. Phys., 2002, A706: 418; ZUO W, Lombardo U. HEP NP, 2002, 26: 1134(in Chinese)(左维, Lombardo U. 高能物理与核物理, 2002, 26: 1134); ZUO W et al. HEP NP, 2005, 29: 1061(in Chinese)(左维等. 高能物理与核物理, 2005, 29: 1061)18. Yaes R J. Phys. Rev., 1971, D3: 3086; Brockmann R, Machleidt R. The Dirac-Brueckner Approach. In NuclearMethods and the Nuclear Equation of State. Baldo M ed.Singapore: World Scienti c, 1999. 12119. Thompson R H. Phys. Rev., 1970, D1: 11020. Blankenbecler R, Sugar R. Phys. Rev., 1966, 142: 1051; Partovi M H, Lomon E L. Phys. Rev., 1970, D2: 199921. Bethe H A, Brandow B H, Petschek A G. Phys. Rev., 1963, 129: 225; Baldo M. The Many-body Theory of the Nu-clear EOS. In Nuclear Methods and the Nuclear Equationof State. Baldo M ed. Singapore: World Scienti c, 1999. 122. Jeukenne J P, Lejeune A, Mahaux C. Phys. Rep., 1976, 25C: 8323. Baldo M, Bombaci I, Ferreira L S et al. Phys. Lett., 1988, B209: 13524. Hufner J, Mahaux C. Ann. Phys., 1972, 73: 525; Grang_eP, Cugnon J, Lejeune A. Nucl. Phys., 1987, A473: 36525. ZUO W, Lombardo U, Schulze H J. Phys. Lett., 1998, B432: 24126. ZUO W, Giansiracusa G, Lombardo U. Phys. Lett., 1998, B421: 127. Kondratyuk S, Scholten O. Phys. Rev., 1999, C59: 107028. Frick T, Gad Kh, Muther H. Phys. Rev., 2002, 65: 03432129. Baldo M, Bombaci I, Giansiracusa G et al. Phys. Rev., 1990, C41: 174830. Baldo M, Bombaci I, Giansiracusa G et al. Nucl. Phys., 1991, A530: 135
  • 加载中

Get Citation
LUO Pei-Yan, ZUO Wei, LI Zeng-Hua, YONG Gao-Chan and XU Zhong-Feng. DBHF Approach and Thermodynamic Consistency for Nuclear Matter Calculations[J]. Chinese Physics C, 2006, 30(10): 976-982.
LUO Pei-Yan, ZUO Wei, LI Zeng-Hua, YONG Gao-Chan and XU Zhong-Feng. DBHF Approach and Thermodynamic Consistency for Nuclear Matter Calculations[J]. Chinese Physics C, 2006, 30(10): 976-982. shu
Milestone
Received: 2005-12-26
Revised: 2006-01-23
Article Metric

Article Views(3419)
PDF Downloads(586)
Cited by(0)
Policy on re-use
To reuse of subscription content published by CPC, the users need to request permission from CPC, unless the content was published under an Open Access license which automatically permits that type of reuse.
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Email This Article

Title:
Email:

DBHF Approach and Thermodynamic Consistency for Nuclear Matter Calculations

    Corresponding author: ZUO Wei,
  • Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China2 Graduate University of Chinese Academy of Sciences, Beijing 100049, China

Abstract: Within the framework of Dirac Brueckner-Hartree-Fock (DBHF) approach, we calculate the energy per nucleon, the pressure, the nucleon self-energy and the single-nucleon energy in the nuclear matter by adopting two different covariant representations for T-matrix. We mainly investigate the influence of different covariant representations on the satisfiable extent of the Hugenholtz-Van Hove (HVH) theorem in the nuclear medium in the framework of DBHF. By adopting the two different covariant representations of T-matrix, the predicted nucleon self-energy shows a quite different momentum and density dependence. Different covariant representations affect remarkably the satisfiable extent of the HVH theorem. By adopting the complete pseudo-vector representation of the T-matrix, HVH theorem is largely violated, which is in agreement with the result in the non-relativistic Brueckner-Hartree-Fock approach and reflects the importance of ground state correlations for single nucleon properties in nuclear medium, whereas by using the pseudo-scalar representation, the ground state correlation cannot be shown. It indicates that the complete pseudo-vector presentation is more feasible than the pseudo-scalar one.

    HTML

Reference (1)

目录

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return