[1]
|
Z. Koba, H. B. Nielson, P. Olesen, Nucl. Phys. , 40B (1972), 317. [2] D. Bondyopadhyay et al., Nuovo Cimento,, 35A(1976), 325. [3] D. Cohen, Phys. Lett. , 47B (1973), 457. [4] A. J. Sadoff et al., Phys. Rev. Lett., 32 (1975), 955. [5] G. A . Akopdjanov et al., Nucl. Phys., 75B (1974), 257. V. E. Barnes et al., Phys. Rev. Lett, 34 (1975), 415;I. W. Chapman at al., Phys. Rev. Lett., 36 (1976),124. [6] F. T. Dao et al., Phys. Rev. Lett., 33 (1974). 389. [7] V. M. Hagman et al., Phys. Scr. (Sweden) 14 (1376), 24. [8] K. G. Wilson, Rev. Mod. Phys., 47(1975), 773. [9] W. Ernst et al., Nuovo Cimento, 31A (1976), 109. [10] E. Parzen, Stochastic Processes (Holanden-Day, INC). 1962. [11] D. G. Kendall, On the Role of Variablc Generation time in the Development of a Stochastie. Birth Process, Biometrika. Vol. 35 pp. 316-330. 1948. 强子多重数的Kendall标度分布可以从不同的假定得出: N. Suzuki, Prog. Theor. Phys., 51 (1974), 1629. 此文假定强子一强子碰撞产生五个集团(α=5),从光子计数分布得到Kendall分布,只当Nch=8时[9]与实验符合;《基本粒子及超高能核作用模型简介》,云南大学物理系高能短训班讲义,1975, 从π介子受激发射假设出发得到Kendall标度分布:从重整化群及Wroblewski关系出发得到多重数的Kendall标度分布; B. Carazza et al., Lett. al Nuovo Cimento 15 (1976), 553. 此文从Wroblewski关系及信息论考虑得出多重数的Kendall标度分布; D. P. Bhattacharyya et al., Indian . J. Phys., 50 (1976), 18. 此文也是从Wroblewski关系导出多重数的Kendall标度分布. [12a] E. L. Feinberg, Phys. Lett. C (Phys. Rep), 5 (1972), 269. [12b] Y-A. Chao. Nucl. Phys., 40B(1972),475. [13] C. Fzell et al., Phys. Rev. Lett., 38 (1977), 873.[14] D. Lurie, Partieles and Fields, §3-5, Iuterscience Publishers, 1968.[15] P. Slattery, Phys. Rev., D7 (1973), 2073.[16] C. Bromberg et al., Phys. Rev. Lett., 31 (1973). 1563.
|