The ι /E Puzzle and the Moment Analysis

Yu Hong

(Center of Theoretical Physics, CCAST Lab. and Institute of High Energy Physics, Chinese Academy of Science, Beijing)

We introduce the photon angular distribution for the moment of the process $e^+e^- \to J/\psi \to \gamma B$, $B \to P_1P_2P_3$ to discuss the ι/E puzzle. It provides a criterion to distinguish the 0^{-+} state from the 1^{++} state in the process $e^+e^- \to J/\psi \to \gamma KK\pi$.

1. INTRODUCTION

The $\iota/\eta(1440)$ and $E/f_1(1420)$ mesons are of great interest in hadron spectra. A $K_s^o K^\pm \pi$ resonance (ι/η) was first observed in the radiative J/ψ decay by the MARK II group[1]. Later the crystal Ball group[2] performed an isobar analysis on the resonance in $J/\psi \to \pi^0 K^+ K^-$ and reported that it was dominated by quasi-two body decay models $J/\psi \gamma \iota$, $\iota \to \delta \pi$, $\delta \to K^+ K^-$, and its quantum numbers were $J^{pe} = 0^{-+}$. Independently, the Jacob-Berman technique was used for the spin-parity analysis of the 3 pseudoscalars decay mode. The results from both the MARK III[4] and DM2[5] groups show that the quantum numbers of the resonance in $J/\psi \to \gamma K K \pi$ decay mode were $J^{pe} = 0^{-+}$. The E(1420) was first discovered by Baillon et al.[6] in $p\bar{p}$ annihilation decaying into $kk\bar{\pi}$. However, the experimental results have been controversial about whether its spin-parity is 0^{-+} or 1^{++} .

The MARK III group has noticed that peak in $J/\psi \to \gamma K \overline{K} \pi$ cannot be fitted very well by a single Breit-Wigner resonance. There may be more than one resonances in the process.

We assume that the peak in $J/\psi \to \gamma K \overline{K} \pi$ includes ι (0⁻⁺) and E(0⁻⁺ or 1⁺⁺). If E(1420) is a pseudoscalar and the same as the ι (1440), the results of the MARK III and DM2 groups can be

Supported by the National Natural Science Foundation of China Received on September 14, 1988

TABLE 1					
The Number of Independent Decay Parameter for Different Jpc States					

Jrc	μ		The num	nber of independ cay parameters	ent
0-+	0			1	
1++	1, -1			2	

accepted completely. If the spin-parity of E is 1^{++} , the only comment we can make on the results of the two groups is that they had insufficient events and the method adopted was not capable of identifying the 1^{++} component. It is the ι -E puzzle.

In this paper we will generalize the moment analysis based on the Jacob-Berman angular distribution and attempt to give an efficient criterion which can discriminate whether there is an $E(1^{++})$ component in the resonant peak produced in the process $J/\psi \to \gamma KK\pi$.

2. JACOB-BERMAN ANGULAR DISTRIBUTION

Using the Jacob-Berman technique for the 3 pseudoscalars decay mode of the process $e^+e^- \rightarrow J/\psi \rightarrow \gamma B, B \rightarrow p_1p_2p_3$ the angular distribution of the normal of the scattering plane can be expressed as

$$W_{J}(\theta_{\tau}, \theta, \phi) \sim \sum_{\Lambda\Lambda'} I(\lambda_{J}, \lambda'_{J}) A^{J}_{\lambda_{\tau}\Lambda} A^{J}_{\lambda_{\tau}\Lambda'} \sum_{\mu} D^{J^{\bullet}}_{-\Lambda\mu}(\phi, \theta, 0)$$
$$\cdot D^{J}_{-\Lambda'\mu}(\phi, \theta, 0) |R_{\mu}|^{2}$$
(1)

where

$$|R_{\mu}|^2 = 2\pi \sum_{\lambda_1 \lambda_2 \lambda_3} \iint d\omega_1 d\omega_2 |F_{\mu}(\omega_1 \lambda_1, \omega_2 \lambda_2, \omega_3 \lambda_3)|^2$$
(2)

 $I(\lambda_1, \lambda'_1)$ is associated with the subprocess $e^+e^- \to J/\psi$; $A^{\rm J}_{\lambda_7\lambda}$ is the helicity amplitude for the subprocess $J/\psi \to \gamma B$; F_{μ} is the phenomenological decay amplitude for the process $B \to p_1 p_2 p_3$; $\omega_1 \lambda_1$, $\omega_3 \lambda_3$ and are the energies and helicities of the three pseudoscalar mesons p_1 , p_2 and p_3 , respectively; R_{μ} is called the decay parameter. Parity conservation in the decay process gives the relation

$$F_{\mu} = P(-1)^{\mu+1} F_{\mu} \tag{3}$$

Therefore the number of independent decay parameters for different J^{pe} is shown in Table 1. The angular distributions are given by

$$W_0(\theta_r, \theta, \phi) \sim (1 + \cos^2 \theta_r) |R_0|^2$$
(4)

for 0⁻⁺ and

$$W_{1}(\theta_{r}, \theta, \phi) \sim \left[\frac{1}{2}\sin^{2}\theta x^{2}\sin^{2}\theta_{r} + (1 + \cos^{2}\theta_{r})\sin^{2}\theta\right]$$
$$-\sin 2\theta_{r} \cdot x \cdot \cos \phi \sin \theta \cos \theta \left[(|R_{+1}|^{2} + |R_{-1}|^{2})\right]$$
(5)

for 1^{++} . After integrating over Θ and φ we obtain the following photon angular distribution

$$W_{0}(\theta_{\tau}) \sim (1 + \cos^{2}\theta_{\tau}) |R_{0}|^{2}, IV_{1}(\theta_{\tau}) \sim (1 + A\cos^{2}\theta_{\tau})(|R_{+1}|^{2} + |R_{-1}|^{2})$$

$$A = \frac{2 - x^{2}}{2 + x^{2}}$$
(6)

Provided that the number of events is enough we should be able to distinguish between 0^{-+} and 1^{++} states in $J/\psi \to \gamma K K \pi$ from Eq.(6). The analyses of the MARK III[4] and DM2[5] groups showed that there is no 1^{++} component observed in the peak within present experimental error limits.

3. GENERALIZED MOMENT ANALYSIS

In Ref.[7] we generalized the moment analysis[8] and introduced the photon angular distribution of the moment. For the process $e^+e^- \to J/\psi \to \gamma B$, $B \to p_1p_2p_3$ the moment is expressed as the following

$$H_{J}(\theta_{\tau}, LM) \sim \langle D_{M0}^{L}(\phi, \theta, 0) \rangle$$

$$\sim \sum_{\Lambda\Lambda'} I(\lambda_{J}, \lambda'_{J}) A_{\lambda_{\tau}\Lambda}^{J} A_{\lambda_{\tau}\Lambda'}^{J*} \sum_{\mu} (J - \Lambda' LM | J - \Lambda)$$

$$\cdot (J\mu L0 | J\mu) |R_{\mu}|^{2} = t_{J,L}^{M*}(\theta_{\tau}) \sum_{\mu} (J\mu L0 | J\mu) |R_{\mu}|^{2}$$
(7)

where the multiple parameter is

$$t_{\mathbf{J},L}^{M^*}(\theta_{\tau}) = \sum_{\Lambda\Lambda'} I(\lambda_{\mathbf{J}}, \lambda'_{\mathbf{J}}) A_{\lambda_{\tau}\Lambda}^{\mathbf{J}} A_{\lambda_{\tau}\Lambda'}^{\mathbf{J}^*} (\mathbf{J} - \Lambda' L M | \mathbf{J} - \Lambda)$$
(8)

For $J^{pc} = 0^{-+}$ it is easy to get

$$H_0(\theta_\tau, 00) \sim (1 + \cos^2 \theta_\tau) |R_0|^2$$

$$H_0(\theta_\tau, 20) = 0$$
(9)

For $J^{pc} = 1^{++}$ we have

$$H_{1}(\theta_{\tau}, 00) \sim (1 + A_{1}\cos^{2}\theta_{\tau})(|R_{+1}|^{2} + |R_{-1}|^{2})$$

$$A_{1} = \frac{1 - 2x^{2}}{1 + 2x^{2}} \qquad |A_{1}| \leq 1$$
10)

$$H_{1}(\theta_{\tau}, 20) \sim (1 + A_{2}\cos^{2}\theta_{\tau})(|R_{+1}|^{2} + |R_{-1}|^{2})$$

$$A_{2} = \frac{1 + x^{2}}{1 - x^{2}} \qquad |A_{2}| \geqslant 1$$
(11)

The obvious difference between $H_0(\Theta_{\gamma},20)$ and $H_1(\Theta_{\gamma},20)$ may be an efficient criterion to distinguish between the 0^{-+} and 1^{++} states in $e^+e^- \to J/\psi \to \gamma K\overline{K}\pi$. If the photon angular distribution of the moment $H_J(\Theta_{\gamma},20)$ is not zero there may exist the $E(1^{-+})$ component in the peak for the 1^{++} $J/\psi \to \gamma K\overline{K}\pi$. On the contrary, if $H_J(\Theta_{\gamma},20)=0$ the peak must not include the 1^{++} component.

REFERENCES

- [1] D. L. Scharre et al., Phys. Lett. 97B(1980)329.
- [2] C. Edwards et al., Phys. Rev. Lett. 49(1982)259.
- [3] J. D. Richman, Ph D thesis, caltech., CALT-68-1231(1985).
- [4] J. E. Augustin et al., LAL/85-27(1985).
- [5] S. M. Berman and M. Jacob, Phys. Rev. 139(1965)1023.
- [6] P. Baillon et al., Nuovo Cim. 50A(1967)393.
- [7] Yu Hong, High Energy Physics and Nuclear Physics, 13(1989)87
- [8] S. U. Chung, Phys. Rev. 169(1968)1342.