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External Momentum Expansion in NJL Model
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Abstract In the large N, expansion beyond mean-field approximation, we develop a
general scheme of SU(2) NJL model including current quark mass explicitly. In our
scheme, the constituent quark's propagator is expanded in pion's external momentum k,
and all the Feynman diagrams are naturally expanded to k* term in a unified way. Our
numerical results show that in the mean field approximation, the effect of current quark
mass is invisible, however, the effect of current quark mass can be seen explicitly beyond
mean-field approximation for reasonable choices of the parameters in NJL model.
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The NJL model in the leading 1/ N, approximation, i.e., Hartree plus random-phase
approximation (RPA), has been quite successfu! for describing low-energy meson physics
in zero and finite temperature and density" . At this level there is no back contribution
of meson modes to the quark propagator. If one tries to apply NJL model to a real
physical process including pion at low energy, one must consider massive pion's
contribution, which can not be obtained at the mean-field approximation level.

Among many efforts considering meson corrections, only [4] and [5] gave us chirally
symmetric self-consist approximation schemes, in which, all the chiral theorems, i.e.,
Goldstone's theorem, the Goldberger-Treiman relation, and the conservation of the axial
quark current, are obeyed in the chiral limit. In this paper, we extend the method of{5],
and develop a general scheme for explicit chiral symmetry breaking of SU (2) NIL
modelm, which is necessary for our future work to analyze processes related to pion at
low momentum.

The two-flavor NJL model is defined through the Lagrangian density,

2= Ylir*d, — m)y + Gl(FY)* + (Fiy, 7)), 6]
where G is the effective coupling constant with dimension GeV ™2 and m, is the current
quark mass, assuming isospin degeneracy of the u and d quarks, and ¢, ¥ are quark
fields with flavor, colour and spinor indices suppresseed.

The complete description is represented by two Schwinger-Dyson (SD) integral
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equations, i.e., the constituent quark propagator and the composite meson propagator, see
Fig.1 a and Fg. ! b, and the two SD equations must couple to each other
self-consistently and keep chiral symmetric relations. In Fig.1, the one-vertex grey bubble
kernel a represents the quark self-energy, and the two-vertex grey bubble kernel b
indicates the meson polarization function.
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Fig.1. The quark propagator a and the Fg.2. kernel a and kernel b. m, and dm indicate
meon propagator b. The light dashed  the leading and subleading order of quark self-
line in a and b represents a four-fermion energy, and HﬁPA) and 81T (}:c.d> represent the leading
vertex 2iG of the NIL type. and subleading order of meson polarization function.
The heavy dashed lines indicate internal meson

propagator.

It is difficult to give the full expressions of the two kemels. Usually an
approximation scheme called large N, expansion is adopted in NJL model. V. Dmitra§inovi¢
et al. in their papexls] proved that the kernel a and kernel b shown in Fg. 2 are
self-consistent leading and subleading order in 1/ N; expansion and can keep all the chiral
symmetric relations in the chiral limit. The heavy solid line indicates the constituent quark
propagator with total mass m, and the heavy dashed line is the internal meson propagator
D&M (g), i e, a sting of single quark loops. The leading O(1) and the subleading
O(1 / N,) order of kernel a are named m, and &m, and the leading O(N_) and subleading
O(1) order of kernel b are expressed as II ®R*Y (k) and SIT (), respectively, where M
represents pseudoscalar meson T and scalar meson o©.

Including current quark mass m,, the gap equation of Fig.1 a can be expressed as

m=m,+my,+dm, 2)
The meson propagator D, (k) of Fig.1 b has the form
2iG
—iD() =7 - 3
iDuR) =T 56 (k) 3
Meson mass m,, satisfies meson propagator's pole condition
1 - 2GIO (K = m,) =0, 4)

while the coupling constant g, is determined by the residue at the pole

g gy = O (0 / G120 I P ©)
Another important quantity in NIJL model is the pion decay constant f, which
generally satisfies

(6)
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In the chiral limit, f, satisfies Goldberger-Treiman relation f(k)g_ (k) = m.

Tqq
To calculate the two-loop Feynman diagrams of kernel b, we adopt the small external
momentum expansion. In the NJL model, the constituent quark is the fundamental element,
and mesons are bound states of constituent quark and anti-quarks. Differently from [5],
we only expand constituent quark propagator in small external momentum k
— 1
S(P+k)=m=5(p)iﬂp)kﬂp)+~5(17)k~9(l?)k5tp)+“'- @)
With this expansion form, all the two-loop Feynman diagrams can be expanded naturally
in &k in a unified way. The pion propagator pole condition expanded to k? term is
m

m} = : @®)
= Gm( — 8N,il(m,) + 2811 P(0))
Correspondingly, the approximate form of £ g0 18
8rga = QIE™(k) [ 0k7) | . .+ 3T P(0), €]

'

81 P (0) can be calculated from the first term of axial-vector matrix element in the
external momentum expansion,
SIP(0) = MO0) = MO©0) + M?(0) + M90) . (10)

M) are calculated and expressed as following:
4

d
MO©0) = iNc{ J (21:;4 [ - DS (I( - 3¢°Lg)) +
4

d
MO(0) = iNc{ 6 G [~ DI @K@ + 3K0) - 34°M) +

d4
(2;)14[— iDF™ (@)1 (4K(g) + 3(4m’ — ¢) L(‘I))}, (11)

d4
2 J (_21:)14[— iDF™ (91 (5K(g) + 3K(0) — 3(¢° - 4m2)]ll(q))}, (12)

d4
M0) = - 32i1\’cfﬁ N[ - iDFN@IL - iD FN @)l { — (Kg) + 2 K(©0)) (I(g) — K0)) +

(Ug) + I0) = (" + 2m)K@)Kg) — 4*K)Ug) + 202 KO)L - iDP (@)}, (13)
[~ iDP (@) = 8N(Kg) + (@m” ~ ) / 24D(0a)  IO) + ¢*K@)[ — iDF(g)),
where, I(q),K(g),l(q),and M(q) are quark-loop integrals \ "
9~ [G e oy 0 - [ 7=
4
| o TG T M = f(;nl; TG

Lg) =

and the O(1/ N,) internal meson propagators are [ — iD®¥(g)] = 1/ [4N (- mikm ) + q°
Kg)lfor m, and [ —iDF™M(g)) = 1/ [4N(— m2I(m ) + (¢° — 4m?) Kq))]for o.

Now we turn to the numerical evaluation. We have introduced the quark momentum
cut-off A, in Pauli-Villars regularization and the meson momentum cut-off A, in covariant
regularization.
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By comparing with two observables m, = 139MeV, f_= 92.4MeV and one reasonable
experimental range of — 300MeV < (Z]q>”3 < — 200MeV,we can not give fixed values
of the four parameters, the current quark mass m,, coupling constant G, quark momentum
cut-off A, and meson momentum cut-off A, Here we regard the ratio z= A,/ A, as one
free parameter. For each z, we can get a series of solutions from the above conditions.
The meson cloud effects are now characterized by z. The larger z means more meson
contributions. Specially, when z= 0, i.e, A, = 0, which retumns to the mean-field
approximation. For each z, there is a region where the quark condensate is almost a
constant when other quantities change, and we define this “plateau region” by (— (Z]q)” %
< (- (g} +0.0015)GeV.

Our numerical results are shown in Table 1, where we list the corresponding region
of constituent quark mass m, current quark mass m,, quark momentum cut-off A, within
the quark condensate “plateau”. This table shows that:

Table 1. Quantities in the region of defined plateaus

—{gq)'"”1 Gev miGeV mo/MeV At/ GeV
=0 :::0 0.2096+0.0015 0.4770.10 8.90F0.30 0.6150.002
o= 0.2397+0.0015 0.39F0.05 0.725+0.010
= me%0 0.2360+0.0015 0.40F 0.05 7.78F0.20 0.7100.010
=0 0.2599+0.0015 0.38F0.04 0.801+0.008
=1 mo#0 0.2566+0.0015 0.39F0.04 729F0.20 0.785+0.008

1) In the mean-field approximation z=0, the values of constituent quark mass m and

the current mass m is a little higher than the empirical values m=1/3 proton mass and m,
~5~7MeV, and the quark condensate within the plateau is much lower than 0.25 GeV;
however, these quantities in the plateaus at z = 1,1.5 are more reasonable comparing with
the empirical values.

2) In the mean-field approximation, the values of <¢7q> in the case of m =0 and m,
# 0 are the same, and so are the values of m and A, The values become different when
considering meson corrections for z# 0, i.e, beyond mean-field approximation. This
shows that meson modes have feedback to the quark self-energy beyond mean-field
approximation, and it is reflected by the quantities calculated from quark self-energy.

3) Comparing the values of — (qq)” and A . at z=0, they are all corrected by the
order of 30% at z = 1.5. _

Our conclusions are, only beyond mean-field approximation, can we see the effects of
current quark mass explicitly, and the parameters become more reasonable in the quark
condensate plateau comparing to the empirical values.

The authors would like to thank Dr. V. Dmitra$inovit, Dr. E. N. Nikolov and Dr. M.
Franz for their kind help during this work.
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