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Medium Effects and Thermal Instability in @; Theory "

XIONG Chun HOU De-Fu
(Tnstitute of Particle Physics, Central China Normal University, Wuhan 430079, China)

Abstract We calculate the effective mass and damping rate in @ theory at finite temperature by eval-
vating the real and imaginary parts of the one-loop self energies at the hard thermal loop (HTL) approxi-
mation. We show that there is thermal instability above a critical temperature T, . The effective mass and
damping rate are proportional to «/}T and gT respectively. We compare our results with those in hot
QCDn.
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1 Introduction

The interaction of particles with a medium can be described by quantum field theory at finite
lemperature“'zz . Using perturbation theory,self energies, scattering amplitudes, etc. can be calcu-
lated . In this way effective masses,decay rate and other interesting properties can be derived. How-
ever, perturbative calculations based on bare propagators and vertices tuned out to be inconsistent,
i.e. they lead to infrared and mass divergent results. This problem has been solved within the Hard
Thermal Loop (HTL) approximation invented by Braaten and Pisarski> . In this approximation the
momenta of the internal particles of the self energies are assumed to be hard,i.e. of order of the
temperature T ,while the external momenta are soft,i.e. of the order gT. Those momentum scales
are distinguished only in the weak coupling limit g<1,0n which the HTI. approximation is based .
The self energies calculated in this way are gauge independent, which guarantee the effective mass
and the decay rate gauge independent for gauge theories* ™ . The HTL approximation has been
widely used to study collective effects in various kind theories. In this paper,we are going to study
medium effects in $, theory which is interesting as a toy model of QCD‘(’: . Due to the interation with
the heat bath,a particle at finite temperature obtains an effective mass and damping rate' ™! . These
medium effects can be studied through the self-energy at finite temperature. The one-loop self-ener-
gy in $; theory includes two diagrams:sun-set diagram and the tadpole diagram. The sun-set dia-
gram is the conventional self-energy just like the three-gluon one-loop self-energy in QCD which is
supposed to contribute to thermal mass by the order of g’ 72", while the second diagram (tadpole
self-energy) is usually overlooked, since it just generates an ultraviolet divergence at zero tempera-
ture. We are going to show this tadpole diagram has an nontrivial contribution to the medium effects
in $, theory at finite temperature and leads to the thermal instability above a critical temperature
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In next section we will present the complete calculation of the one-loop self energies in $: theo-
1y in the HTL approximation. In Section 3 we calculate the effective thermal mass and the decay
rate. We also analyse the thermal instability and find out the critical temperature. Finally we give

our conclusions in Section 4.
2 One-loop Self Energies at Finite Temperature

In 4] theory, the one loop self-energy contribution comes from two diagrams Fig. (a) and
(b). We will calculate the self energies from these two

K
K diagrams respectively below.
P P 2.1 Sun-set diagram
P —
» In the vacuum the self-energy contribution from the
K-p P sun-set diagram Fig.1(a) rez:ds
.o 'K
@ &) m.(p) = —ig?| SK p,(x)D (0, (1)

£ (2n"
Fig.1. One-loop self-energy:(a) sun-set where , K = ( E,K),K=(K) Dy denotes the Boson
diagram; (b) tadpole diagram. propagator and @ = K - P.

In order to compute the self-energy at finite tempera-
ture we apply the imaginary time formalism. We will work under the hard thermal loop approxima-
tion : The temperature is much greater than the mass of ¢ field, T>» m . The intemal momentum K is
hard , while the external momentum is soft. To perform the sum over the Matsubara frequencies k, it

is convenient to use the Saclay representation of the bosonic propagators:
3
D, (K) =-j e Dy (7, k)de, (2)
0

1

DB(Z‘,k) = >E
k

((1 + ng(k))e™ = ng(kle" 1, (3)

where np( k) = denotes the Bose distribution function and E; = k* + m* . By making use of

PL |

the expression of §-function

8(zr) = %%}exp(izfgrr)
and Fgs (2) and (3),we can get

&k 1 1+ ng(k) + ng(q) ng(k) - ny(q)
_ 2 B B B B
I.(P) = ¢ J (2n)° 2E.2E,l  ip, - E. - E, ' ipo + E, - E,
ny(q) = ny(k) 1+n3(k)+ng(q)]

ip, - E, + Eq - ip, + E, + E,, ’

(5)
After performing the analytic continuation ip,— p, + ic we obtain

[ &k 1
n.(pr) = gj(zn)’ 2E,.2Eq[(l + ng(k) + na(q)) x

1 1
(po—Ek—Eq+ie_p0+E,‘+Eq+ie)+

1 1
(ny (k) - "B("))(po + E, - E +ic  p, - E, + E_ + ie)]‘ (6)

Where the “1” term which is independent of distribution functions corresponds to the vacuum contri-
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bution and contains an ultaviolet divergence. This divergence can be renormalized through appropri-
ate counter-terms as the usual zero temperature field theory. Here we only interested in the tempera-
ture dependent part:

2 d’k 1 1
mp) = gj(z ) 4Ek [(" (k) + nB(q))( - E - E, +ic po + E, + E, + i€)+

1 1
(n“(k)-ns(q))(Pu+En-Eq+i€—Po‘Ek+Eq+i€)] @

which contains only linear terms of distribution functions. In the HTL approximation, p, , P<T, we

have the following relations:
E, E, =2,

E, - E, = E,cos 0,
ng(k) + ng(q) =~ 2n;(k),

ng(k) - ny(g) = - LTnB(k)[l + ng(k)]E, cos, (8)

where 0 is the angle between p and k. Using these approximate expressions, we obtain the real part
of the self-energy:

Rell,(po.p) ~- E.1(1-20,(pulp)], 9)

where (), is the second kind of Legendre function and often appear in Hard Thermal Loops. The
derivation of Eq.(9) can be found in the appendix.

2.2 The tadpole diagram

The second diagram (tadpole diagram) has been less discussed, because it just generates an ul-
traviolet divergence which can be regulariged through an appropriate counter-term. At finite temper-
ature , though , we will find there are physical temperature dependent effects. In the vacuum it reads

n4m=-mﬂmfm<mn<w (10)

where D, (K) = Elg with by =i2nnT and Dy{( Q) = - 1‘2 with () =0. Using the Saclay represen-
m
tation of the bosonic propagator as before and after the Matsubara frequency summation we get

& &k
o.(pr) = }(2 ¥ 2E[1+2na(kﬂ (11)

Here again the n-independent term corresponds to the vacuum contribution and contains an ultravoi-
let divergence, which can be renormalized by appropriate counter-terms. The temperature dependent

contribution of this tadpole diagram turns out to be (in HTL approximation )

11(1))—%”1’2t (12)

The result means that this tadpole diagram does not contain an imaginary part. The derivation of Eq
(12) can be found in the appendix, too.

3 Medium Effects

We have got the final results of the self energies for $; theory in the HTL approximation , from
which the effective mass and the decay rate etc. can be calculated. The effective mass is related to
the real part of self-energies. When extemal momenta p, =0, P—>0, the real part is just opposite to
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the thermal mass square

2 _ - B g r
m. = - Rell,(py,p =~ 0) = v (13)
2 4
md = - Rell,(po.p = 0) = - EL T, (14)
180m
The total thermal mass square is m’, = m’ + m. + m: and thus,
g T'rn
- 2 2yin [y ) 15
Mo = (s 4 m) \/ 180m*(m® + m?) (15)
The above formula indicates that the effective mass is well-defined if only the following condition is
satisfied
4
180m’ (m’ + m,
TsTc=\/ ’"(”‘2*""). (16)
g

If the temperature is higher than T_, there will be an imaginary thermal effective mass, which will
lead to thermal instability. This agrees qualitatively with Ref. [10], where the analysis was based
on the effective potential. The critical condition Eq. (16) indicates that for temperature of order T,

~ mh g.m is of order gT. Therefore the total effective mass is of order v gT, while the effective
gluon mass in hot QCD is of order gT.

The decay rate, however, is related to the imaginary part of the self energy. The concretly ana-
Ivtic expression is

ImIl, (a7
2py

Now let’s calculate the imaginary part of the self-energe. Since the tadpole diagram has no any

imaginary part,we only need to look at Fig.1 (a). By making use of

1. = Prl—inﬁ(x) (18)
x + 1€ x
the imaginary part of the retarded self-energy from Fig.1(a) consists of two parts € and D,
Iml,(P) = C+ D, (19)
where
. 0 &k , N
C =-ng | Gy mZn,,(k)[(?(po -k -E)-8(p,+E, +E)], (20)
D=-=x [ Ak L[n (k) = ng(g)][8(py + E, — E,)) = 8(p, - E, + E))] =
7| (27r)5 FYERRG. B 0 & e 0 X 4
- ngJn dk 4;:_27!’4;(")[1 + nB(k)]J((;%Epcosﬁ X

[8(p, + E,cos8) - 6(p, — E,cos8)]. (21)
In HTIL. approximation, £, p, .there is no contribution from C due to kinematical constraints. Af-
ter using the HTL approximation and evaluating the integrals in D, we obtain the imaginary par of
the self-energy

g Tp
_Fo
Imll, ~ - T4E, ° (22)
thus the decay rate reads
2 2
- £
Y = 288E, - (23)

Since E, is of order v gT ,the damping rate turns out to be order of gT which is larger than the
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gluon damping rate of order g° T

4 Conclusion

We have studied the medium effects and thermal instability in ¢; theory. By evaluating the
one-loop self-energy in HTL approximation including both sun-set and tadpole diagrams, we calculate
the effective mass as well as the damping rate of the particle at finite temperature. We show that the
tadpole diagram dominates over the sun-set diagram for the effective mass contribution, whereas only
the latter contributes to the damping rate. Further more, we show that there is a critical temperate T,

above which the thermal instability arises in $; theory at finite temperature. The damping rate is

proportional to g’ T°/E, . For temperature of order T, ~ m/i/ g the effective mass is of order Vgl
and the damping rate tums out to be of order g7 in $; theory. While in hot QCD, the effective gluon
mass is of order gT and its damping rate is of order gT.

The authors are grateful to prof . Li Jiarong for valuable discussion .
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Appendix (A)

We will give here the explicit derivations of Eqs. (9),(12).
The real part of diagram (a)
We start our calculation from Eq. (7). The unintegreted real part can be divided into two parts as below

Rell, (P) = A+ B, (AD)
1 1
A= gJ(ZK)S 4EE ——[n, (k) + ""(q)J(FEA _E, " oo v B3 Eq) s (A2)
:f £k 1 - 1 N
B =8| GoF aEE,- ") - ""(q)](po v E _E “po-E o+ 1;) (A3)

In the HTI, approximation,i.e.assuming p, , P< T, ¢~ k,Eqs.(25),(26) now become the following:

NI ZASISRE SN D T T
FE T a VT KT TE ) e S D) T
R To Pt k R
e dk -
gJ (21!')5I [e"ik - 1] & /4,

o &k 1
-8 ,[ (2 (27)° 4k21'"“(k) (14 ny(R)]E cos@[ po + E,cos6 ~ p, - Epcosﬁ] =

e ik n,,(k)_1+na(k)]J' dﬂs( - E, cost Eooq@ )
gJ 4K°'T (2n)* Po+Ec050 pn—EcosO

g 41[J‘ ( - E, cosf E, cosf )
12(2x)* d(cosf) Po + E cos0 ¥ po — E,cosd

Now we define cosf = x ,then we obtain

B
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2 al 2
_gr 26x  @T
b= 288RJ_ldxpn -Ex " T2 Ol(Po/E,).

So the total real part from diagram (a) is

2

1‘2 T
Rell,(P) = A + B = £.-020,(p/E,) - 1].
The self energy of diagram (b)
We start from Eq. (12) and neglect the vacuum part which does not contain any distribution function

2 s 2 - ! gz
IL.(P) = mzj (2m)* 2B, (e* - 1)~ m') (20)*)e e -1 180m’’
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