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Abstract In this paper, we present a general theory of the double-undulator free-electron laser, in which an additional undu-

lator with period close to the beam electron betatron oscillation period in the main undulator is introduced. A set of self-con-

sistent equations is developed to describe the evolution of the optical wave in this device. The basic nonlinear equations are an-

alyzed in the low-gain regime, the high-gain regime, and the saturation regime, respectively. By properly selecting parame-

ters of the additional undulator, we may enhance the gain or efficiency of the free-electron laser.
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1 Introduction

In a free-electron laser (FEL), a relativistic electron
beam (REB) passes through a periodic transverse magnetic
field, the so-called undulator, to generate coherent radia-
tion ranging from the infrared to the X-ray region!!2..
The gain and efficiency are key parameters of FELs.
Bazylev and Tulupov proposed a new construction of a
free-electron laser (FEL), the double-undulator FFL, us-
ing driven betatron oscillations to enhance the gain or effi-
ciency of FELs™®!. This new scheme is based on the fact
that the magnetic field of a real undulator has a quadruple
component which causes the beam electrons to perform
betatron oscillation, and the betatron wavelength is de-
pendent upon the beam energy. In this scheme, a second
magnetic undulator with a period close to the beam elec-
tron betatron wavelength is introduced. Subjected to the
second undulator field, the beam electron executes trans-
verse driven betatron oscillation. Since the beam electron
betatron wavelength depends parametrically on the beam
energy, the amplitude of the beam electron driven beta-
tron oscillation is sensitive to the beam energy. And then
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under proper conditions of the period and amplitude of the
second undulator field, the driven betatron oscillations
may determine beam electron grouping in the ponderomo-
tive wave field, and it provides an additional mechanism of
electron beam bunching.

In Ref. [3], the gain of the double-undulator FEL in
the low-gain regime for the case of a cold, tenuous elec-
tron beam is obtained by using Madey’ s theorem. It is
shown that, under proper conditions, the second undula-
tor may enhance the FEL gain or efficiency greatly. In
this paper, we present a general single-particle theory of
the double-undulator FEL. Qur main purpose is to show
the effects of the second undulator on the FEL dynamics
both in the low gain regime and the high-gain regime. In
Sec.2, a set of self-consistent equations of the double-un-
dulator FEL is developed. In Sec.3, the small-signal gain
of the double-undulator FEL in the low-gain regime and
the growth rate of FEL instability in the high-gain regime
are derived from these basic equations, respectively. The
efficiency of the double-undulator FEL in the regime close
to saturation is also estimated. In Sec. 4, a conclusion is

given.
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2 Basic equations of the double-undulator
FEL

The magnetic vector of the main undulator for the

FEL may be expressed by'*

Aw = - o,A,(1 + K222 2)cos(kyz), (1)
where A, and A, are respectively the peak value and the
period of the main undulator field with A, = 2n/k,. Sub-
jected to the magnetic field given in Eq. (1), the beam
electrons execute fast transverse oscillations and slow beta-
tron oscillations. The velocity of the beam electron fast
oscillation is given by 8, = (W2a,/7)cos(k,z) e,, where
the strength parameter for the main undulator a, = eA,/
V2m,c?, moand e = | e| are respectively the rest mass
and charge of electron, and ¢ the speed of light. The
beam electron betatron wavelength is A5 = 2n/kg, where
kg=a.k,/7, 7 is the Lorentz factor of the beam elec-
tron. Following Bazylev and Tulupov, we introduce an
additional magnetic undulator into this system, and it is

A.=—e,Acos(k.2), 2)
where A, and A, are the peak value and the period of the
second undulator field, with A, =2n/k 2 2;<<A,, and
A <<A,. Clearly, the second undulator field causes the

beam electron to perform driven betatron oscillations along

the x-axis. These oscillations are determined by*}

2
eA A2 m.c* denotes the second undulator

strength. If 2.7k, one obtains the solution of Eq. (3)

= (T«Z/—Zhﬁaig[sin(kcz) + agsin(kgz + $5) 1, (4)

where z; and $ are the initial values of the natural beta-

ack.

y sin(k.z), (3)

where a, =

x

tron motion, which is due to the initial beam emittance
and determined by the initial condition. For our purpose,
we neglect the beam electron natural betatron oscillations,
and consider the effects of the beam electron driven beta-
tron oscillations on the FEL dynamics. In fact, the natu-
ral oscillations can be made to vanish by an adiabatic ta-
pering of entering path of the second undulator.

Since the amplitude of the beam electron driven beta-
tron oscillation is sensitive to the beam energy, under
proper the conditions of A, and a., the driven betatron os-

cillations may determine beam electron grouping in the

ponderomotive wave field, and an additional mechanism of
electron beam bunching is then provided. To show this ef-
fect, we firstly analyze the beam electron longitudinal ve-
locity, which is given by

B. = B. — OB, (5)
214
r _i 2 ackc ]
Bz_l 27(2)|:1+au+(k%_k%)2 ’ (6)
: ek¢
AB, =- 2“;%[cos(2kuf) + az(kaz — klz;)zcos(ZkCE) } ,
(7

where 2 = 7,¢ is the average position of the beam electron
with the velocity 7, = .t .

In the presence of a beam of relativeistic electrons,
the main undulator may couple to a high frequency optical
wave. The vector potential of the linearly polarized optical
field may be taken as

A, =-E(E/k)sin(kz - wt + 9),  (8)
where E and g, are the slowly varied amplitude and phase
of the optical value, respectively, and w, = k,c the optical
frequency. As it performs any additional oscillations on its
longitudinal motion, the beam electron experiences any
oscillations on its phase, which is

AY = kAz =— oysin(2k,z) — g, sin(2k.2), (9)
where the parameters ¢, and o, are respectively defined as
o1= kal/473k, and o, = kE3a2 /475 (k2 — k3)*. The
fast osillations on beam electron phase given by the first
term of Eq. (9) causes emission into all harmonicst*’, e.
g, 2n +1)k,c, for n;=1,2,3,++. The slow oscilla-
tions on beam electron phase expressed by the second term
of Eq. (9) causes each harmonic emission into many
peaks, e.g., 2n; + Dkt nykyc, forn,=0,1,2,3,
+++. In this paper, we assume that the parameter o is
small, e.g., 6;<:0.25, and neglect the harmonic emis-
sion. Furthermore, to avoid radiation line splitting, the
parameter o, should be small, i.e., ¢,<<0.5. In this
case, the wave-number of the fundamental radiation may
be expressed by k,2273k,c(1+ a2) and then the undu-
lator parameters may be expressed by o, = a2/2(1+ a?),
or=a’k k,2(R2 - E2)2(1+42).

Usually, theoretical treatment of the FEL based on
the coupled Maxwell and Lorentz equations for optical

(1,561 respectively. Following

field and electron motion
the classical methods, one obtains a reduced energy equa-

tion and wave equation for double-undulator FEL. dynam-
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45 = aexplig) + c.c., (10)

Lo, = ida, - [expl- i8], an
where the ponderomotive phase &; is given by & = (&, +
k,~ 2k,00) Z; — wt. Here we have introduced dimen-
t=2/Lg, with Lg=A,/4np, the
gain length, p=7"'(a,w,/4k.c)??f4>, the FEL pa-
rameter, fz = [Jo (o1) = J1(a1)]1Jo(02)s wy =
(4nnye?/m )% (ny is the electron beam density), the
plasma angle frequency of electron beam, a, = E,exp[i
(6r+ ¢S)]/(41t)'0mecznbp)1/2, the scaled amplitude of
optical field, I'; = 7;/pYr, the scaled beam energy, and &
= (< 7>} — ¥%)207%, the scaled initial detuning,
with 7z = [k, (1 + a%) 2k, 12, the resonant Lorentz

factor.

sionless variables'®! ;

The ponderomotive phase & is determined by

d§ & . 1
as _ Ry L
Substituting Eq. (6) into Eq. (12), one may get
d, _ i[ _ -1_}_ P
dz_j - 2p pZI'!? 2‘03(1—‘(:"1-‘]')2’ (13)

where the parameter & is defined as & = a2/2(1+ a?),
I'.=y./pYr, with 7.=a, k,/k.. Compared to the equa-
tions for one-undulator FEL'®?, a new feature appears in
these equations for the double-undulator FEL, which is
the last term in Eq. (13) due to the electron driven beta-
tron oscillations induced by the second undulator field. As
this term is sensitive to the beam energy, it alters the na-
ture of the linear regime and the saturation regime of the
FEL for A~ A;. This effects may be seen clearly in the
following. From Eqgs. (10) and (13), one obtains

2
L6 = Kaew(i§) + c.c., (14)
r
K=1+ @m. (15)
i c

The Egs. (11) and (14) clearly describe the evolu-
tion of the optical field in the double-undulator FEL,
which are valid in weak or strong optical field, for high or
low gain. It should be noted that the valid in weak or
strong optical field, for the double-undulator FEL would
require AY /Yo <<(Yy ~ 7.), where AY is the energy
spread. The condition may be written as Ay /7o <<(k.~
kg)/k.. In the conventional FEL, @ =0, and then the

coupling parameter K =1. It can be seen from Eq. (15)
that, by selecting the conditions for A, and a., the cou-
pling parameter K for the double-undulator FEL may be
much larger than unity. This implies that, under proper
condition, the additional bunching mechanism may domi-
nate the FEL dynamics, and great enhancement of the
FEL gain may be achieved.

3 Gain and saturation of the double-undula-
tor FEL

We now proceed to analyze the basic equation in the
small signal low-gain regime, the small singal high-gain
regime, and the regime close to saturation. In the small
signal regime, the nonlinear Egs. (11) and (14) may be
linearized, and the reference to the individual electron
phase can be explicitly removed.

3.1 Low-gain regime

Firstly, we analyze the gain of the optical field (G =
AP/P/,) in the low-gain regime. In this case, the am-
plitude of the optical wave is almost constant. One can ob-
tain the expression of the low gain by combining Egs.
(11) and (14)as

. 2

G = 2ngoK %(#S‘?vigﬁ) ) (16)

where vy = (8~ 8y)Ly/Lg, Ly is the undulator length,

80=@ ¥3/2p( 79— 7.)* denotes the effective energy de-

tuning induced by the second undulator, and g is the so-

called FEL gain parameter, which for low-gain (g,<1)
is given by

g0 = 4niaﬁN3 A?‘z;f%. a7

Here J denotes the electron current density, and I, =

mc>L17kA is the Alfven current. This expression of

the gain for the double-undulator FEL in the low-gain

regime is identical to that obtain by Bazylev and Tulupov

from the Madey’ s theorem!®.

The maximum gain is
reached at vy =2.6, and given by

Grex = 0.27ngoK. (18)
Eq. (18) shows that the maximum gain of the double-un-
dulator FEL in the low-gain regime is proportional to the
coupling parameter K. And then the low gain is sensitive-
ly dependent of period and strength of the second undula-

tor. From Eq. (15), it can be seen that by selecting the
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condition for A.and a., the value of the coupling parame-
ter K may be much larger than unity. This indicates that
under proper condition the second undulator may enhance
the gain of the FEL greatly. In this case, the additional
bunching mechanism, due to the driven oscillation induced
by the second undulator, dominates the beam electron dy-
namics in the ponderomotive phase.

To fine the condition for gain enhancement, we
rewrite the parameter K as K=1+20,(1,/A )k /(k.—
kg). For the undulator period A, = 2cm, undulator
strength a, =1, and beam energy E, = 5MeV, the beam
electron betatron wavelength Ag=22cm. When ¢,=0.5,
and k./(k,— kg) =70, the coupling factor K28, and
the gain of the double-undulator FEL increases as seven
times as that compared with an ordinary FEL. Note that
as the value of k./(k.— kg) increases, a considerable in-
creasing of the growth rate is obtained, but less energy

spread is required.
3.2 High-gain regime

In the high-gain regime, the optical field get enough
energy to increase exponently. In the study of linear sta-
bility conditions and of the development of the system for
small 7, we expand the Eqgs. (11) and (14) around their
equilibrium values a, (0) =0, <exp(i&)> =0, and
seek the solution of the form exp(iAz). In the limit of
p<<1, we obtains the eigenvalue equation

AB—(8-8)A*+K =0, (19)
a cubic equation which is well known from the theory of
traveling-wave tubes. The instability condition for Eqg.
(19) is given by (& — 8)®>=27/4. The maximum
growth rate I' =2k, Im(A) occurs at § = &y, and its

value is
Tox = Y30k, K'2. (20)
In the high-gain regime, evolution of the radiation field is

dominated by the growth mode, and the gain of double-
undulator FEL may be expressed by

G = 5 exp(/3K " 8,2). 1)

It shows that the growth rate of the FEL instability in the
high gain is proportional to the FEL parameter p, the un-
dulator wave-number, &, and K. As the value of the
coupling parameter K may be larger than unity under
proper condition, growth rate enhancement of the double-
undulator FEL may be achieved. For example, in the case

whtn undulator period A, =2cm, the beam electron beta-
tron wavelength g = 22cm, 0, = 0.5, and k./(k, —
kg) =70, the coupling factor K28, and the growth rate
of double-undulator FEL instability increases one time as
compared with and one-undulator FEL. The higher
growth rate, the larger gain with the same undulator
length, the shorter undulator length required to reach sat-

uration, and the less cost.
3.3 Saturation regime

In this section, we study the nonlinear satura-
tion of the FEL instability. It is known that the non-
linear saturation of the FEL is due to the beam elec-
trons trapped by the ponderomotive potential welll”!.
And then the efficiency of the double-undulator FEL

in the regime close to saturation may be estimated to

be

2Av,,, (22)

where Av,, = v,0 — vy, is the difference between the
longitudinal velocity and the ponderomotive wave
phase velocity in the case when the growth rate I' is
maximal. Av,, can be expressed as a function of the
parameter A, i.e., Av, =27,0Re(A)/k;. In the
limit of ¥9>>1, for k.7 kg, the efficiency of this

device may be expressed by

7 =20 ReA), (23)

In the case when the growth rate I' is maximal,
Re(A)=K'?/2, and then one obtains
7 =20K?73, (24)
which shows that the efficiency of the instability is
proportional to the FEL parameter p, and inversely
proportional to K%, This indicates that for K>1
(the condition of growth rate enhancement) the effi-
ciency of the FEL is reduced. For the undulator pe-
riod A,=2cm, the beam electron betatron wave-
length A3=22cm, 0,=0.5, and k./(k.— kg) =70,
the coupling factor K28, and the efficiency of the
double-undulator FEL instability decreases three
times as compared with an ordinary FEL.
It can be also seen from Eq. (24) that by select-
ing the conditions, one can greatly enhance the effi-
ciency of the FEL, but the growth rate is reduced.
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For instance, when the undulator period A, = 2cm,
the beam betatron wavelength Az =22cm, ¢,=0.5,
and k./(k. — kg) = — 10, the coupling factor KL
0.1 and the efficiency of double-undulator FEL insta-
bility increases three times as compared with an ordi-
nary FEL.

Note that the expressions of the growth rate and
efficiency of the double-undulator FEL instability has
been based on the cold beam limit and the assumption
that p7o<<(79— 7.). The valid of cold beam ap-
proximation would require v, < | 'u;,h |, where v, is
the velocity spread with the superscript denoting the
In the laboratory
frame, for y4>>1, the condition becomes Ay /Yy <<
o Therefore, for the grouping mechanism considered
to be realized, it is necessary that Ay /¥y <<p<<(k,
—kg) k..

quantities in the beam frame.

4 Conclusion

In this paper, we present a general theory of the
double-undulator FEL. Subjected to the additional undula-
tor field, the beam electron executes transverse driven be-
tatron oscillation. Since the amplitude of the beam elec-
tron betatron oscillation is sensitive to the beam energy, it
provides an additonal electron beam bunching. Under
proper conditions, the driven betatron oscillations may de-

termine beam electron grouping in the ponderomotive

wave field, and then the additional bunching mechanism
dominates the FEL dynamics. Here, a set of single-parti-
cle equations is developed to describe the double-undulator
FEL dynamics. The basic nonlinear equations are analyzed
in the low-gain regime, the high-gain regime, and the
saturation regime, respectively. By properly selecting the
parameters of the second undulator, we may enhance the
gain or efficiency of the free-electron laser.

For the grouping mechanism induced by the driven
betatron oscillations to be realized, it is necessary that a
beam electron would be performed more than one driven
betatron oscillation over the length of the interaction. As
the beam electron betatron wave-number quickly decreases
with the increasing of beam energy. For beam energy near
1GeV or more, which is necessary for VUV or soft X-ray
production with available undulator, the beam electron
makes less than one betatron oscillation in a realistic undu-
lator length, and then the mechanism considered here is
broken down, For VUV or soft X-ray FEL, one may use
the ion-focusing channel together with a double undulator
to enhance the gain'®. In this case, the beam electron be-
tatron wave-number for such an ion channel is k3 = &,/
(27)'?, where k,=w,/c, and w,= (4ne’n,/m )"
is the plasma frequency. As the betatron wave-number for
the ion channel slightly depends on 7, and the plasma
wave-number %, can be much larger than k,a,, the driv-
en betatron oscillations can easily be excited for high beam
energy, e. g., 1GeV or more, in VUV or soft X-ray
FEL.
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