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Abstract The synchro-betatron resonances (SBRs) can be excited by beam-beam kick when there is

a crossing angle during collision, which are studied by numerical simulations in the paper. The studies

indicate that the SBRs would be excited when νx,π & (p+rνs)/q, where p, q and r are integers, νx,π is the

horizontal π-mode tune and νs is the synchrotron tune, respectively.
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1 Introduction

The synchro-betatron resonances (SBRs) are ex-

cited when the synchrotron and betatron tunes sat-

isfy the relation kνx + lνy +mνs = n, where k, l, m

and n are integers, νx, νy and νs are the betatron

and synchrotron tunes, respectively. There are three

most important mechanisms for exciting a coupling

between the transverse betatron oscillations and lon-

gitudinal synchrotron oscillations in a synchrotron.

The first one occurs if there is a dispersion in an ac-

celerating cavity. The second is given by transverse

fields which vary in the longitudinal direction over the

bunch. Finally the third arises from the beam-beam

interaction (BBI) when there is a crossing angle
[1]

.

The luminosity of the storage ring DORIS is lim-

ited by the SBRs which are excited by the BBI. The

resonance frequencies are given by νβ = (p+ rνs)/q,

where p, q, r are integers, νβ and νs are the betatron

and synchrotron tunes, respectively. It is proved that

these resonances are caused by the crossing angle
[2]

.

We study the horizontal SBRs due to the BBI us-

ing the code SBBE
[3—5]

, and the simulation is done

using the design parameters of BEPC/
[6]

.

2 Approximations in the code

The SBBE code is a three-dimensional particle-

in-cell code, and parallelized with the message pass-

ing interface. The details of the code are presented

in Refs. [4, 5]. We focus on the approximations in

the code here: (1) Linear betatron oscillations are as-

sumed, where the radiation damping effect and the

excitation random effect are included. (2) The sinu-

soidal synchrotron oscillation is assumed here, while

nonlinear synchrotron oscillations are important for

higher sidebands and for large synchrotron oscilla-

tion amplitude
[7]

. (3) The sudden energy change at

the RF cavity is omitted. (4) Though the code is

termed a three-dimensional one, the actual potential

calculation is only two-dimensional. The longitudinal

field is not taken into account.

3 Simulation results

The corresponding design parameters of

BEPC/ are shown in Table 1. The following re-

sults are partly introduced in Ref. [5].
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Table 1. Design parameters of BEPC/.

E 1.89GeV εx/εy 144/2.2nm

C 237.53m σz 1.5cm

Nb 93 σe 5.16×10−4

Ib 9.8mA νx/νy 6.53/7.58

ξy 0.04 νs 0.034

θc 2×11mrad τx/τy 31553/31553 turn

β∗

x/β∗

y 1m/1.5cm τs 15777 turn

3.1 SBR versus tune

During the tune survey in the area (0.505 6 νx 6

0.545, 0.545 6 νy 6 0.595), we find that there exist

horizontal coherent oscillations somewhere. These os-

cillations are mainly decided by the horizontal tunes,

which are shown in Fig. 8 in Ref. [5]. There exist clear

coherent motions at νx = 0.505, 0.515, and 0.520. It’s

strange that the resonances are damped at νx = 0.510

after several ten-thousand turns. No clear coherent

motions are found at other working points. The data

of the dipole amplitudes are analyzed by performing

a fast Fourier transform. Fig. 1(a) shows the π-mode

tune versus the σ-mode one. It should be mentioned

that 2×0.517−νs = 1 and 2×0.534−2νs = 1 satisfy the

requirement for the SBRs. We find that there exist

strong horizontal dipole oscillations when νx,π & 0.517

or 0.534.

Fig. 1. (a) The horizontal π-mode tune ver-

sus the σ-mode tune at νy = 0.57. The two

straight lines correspond to νx,π = 0.517 and

0.534, respectively; (b) The horizontal π-mode

tune versus the synchrotron tune at (νx,νy) =

(0.51,0.57). The straight line corresponds to

2νx,π −2νs = 1.

There also exist strong coherent oscillations at

(νx,νy) = (0.517,0.57), where νx,π is near 0.538. It’s

hard to distinguish if the resonance be excited by νx,σ

or by νx,π in the case. While for Ib = 4.9mA at the

working point, no clear oscillations are found. An-

other fact is that the resonances are not excited at

(νx,νy)= (0.534,0.57) either. It seems that the SBRs

due to the BBI would be excited when νx,π is on some

resonance line.

The resonances versus the synchrotron tunes are

also studied at (νx,νy) = (0.51,0.57). Fig. 2 shows

the evolution of the horizontal dipole motions at var-

ious synchrotron tunes, and Fig. 1(b) shows the cor-

responding horizontal π-mode tunes. There exist

strong coherent oscillations at νs = 0.030 and 0.031,

where the corresponding νx,π & (1+2νs)/2. The initial

coherent motions are damped at νs ∈ [0.032,0.037],

where the corresponding νx,π . (1 + 2νs)/2. There

exist no clear coherent motions even in the first few

thousand turns at νs = 0.038 and 0.039, where νx,π is

farther away from the resonance line.
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Fig. 2. Evolution of the horizontal dipole am-

plitude of the bunch. The corresponding syn-

chrotron tune is written in each figure. The

betatron tunes are (νx,νy) = (0.51,0.57).

3.2 SBR versus bunch current

It is straightforward to think that the SBRs due

to the BBI would be impacted by the bunch cur-

rent. This is partly proved during the beam-beam

limit study at (νx,νy) = (0.51,0.57). The evolution

of 〈x〉 for various bunch currents was shown in Fig.

11 in Ref. [5]. The coherent oscillations exist when

the current Ib ∈ [2.94mA,4.90mA], and dispear at a

higher current Ib ∈ [5.88mA,7.84mA]. The coherent

motions are damped after several ten-thousand turns

near Ib = 9.8mA, and not damped when Ib > 12mA.

Fig. 3(a) shows the corresponding horizontal π-mode

tune versus the bunch current. The relation between

SBRs and νx,π is similar as that mentioned before.
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Fig. 3. (a) The horizontal π-mode tune versus

the bunch current at (νx,νy) = (0.51,0.57).

The two straight lines correspond to νx,π =

0.517 and 0.534, respectively; (b) The hori-

zontal π-mode tune versus the half horizontal

crossing angle at (νx,νy) = (0.51,0.57). The

straight line corresponds to νx,π = 0.534.

3.3 SBR versus crossing angle

The SBR versus the horizontal crossing angle

at (νx,νy) = (0.51,0.57) is also studied by simula-

tion. The evolution of 〈x〉 for various crossing an-

gles was shown in Fig. 14 in Ref. [5]. There exist

no clear coherent motions when the half horizontal

crossing angle θ < 5mrad. The resonances are ex-

cited when θ ∈ [5mrad,9mrad), and damped when

θ ∈ [9mrad,15mrad). The coherent motion disapears

completely when θ = 15mrad. Fig. 3(b) shows the

corresponding horizontal π-mode tune versus the half

horizontal crossing angle. Here the rules of the SBRs

are also similar as that mentioned before.

4 Discussion

It is generally believed that the SBR frequencies

are given by νβ = (p + rνs)/q. In our simulations,

the horizontal SBRs due to the BBI are excited when

νx,π & (p + rνs)/q, and the SBRs would be damped

when νx,π . (p+ rνs)/q. The SBRs would limit the

choice of the working points of BEPC/.

It should be mentioned that we can not prove that

the SBRs due to the BBI are caused by the non-zero

crossing angle in our simulation. It is proved in Ref.

[2]. Due to the nonlinearity of the beam-beam kick,

the crossing-angle collisions in the horizontal plane

can cause the coupling between the synchrotron and

vertical betatron oscillations of particles, which is

discussed in Ref. [8].
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