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Abstract The errors and correlations of BESIII TOF measurements are carefully checked in hit position

at z partitions with the electron-pair events. The measured time-of-flight’s and their covariance matrices

are subjected to a correlation analysis algorithm which is developed for BESIII to combine the independent

measurements with common errors. Monte Carlo studies show that the correlated analysis can provide more

reliable TOF information on particle identification.
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1 Introduction

The BEPC(Beijing Electron Positron Collider)/

is a double-ring, multi-bunch collider with the de-

signed luminosity approximately 100 times higher

than that of BEPC. The Beijing Spectrometer (BES)

0 will operate at BEPC/ and denote the abun-

dant τ−charm physics. The BES0 detector
[1, 2]

con-

sists of a beryllium beam pipe, a helium-based small-

celled drift chamber, Time-of-Flight (TOF) counters

for particle identification, a CsI(Tl) crystal calorime-

ter, a super-conducting solenoidal magnet with a field

of 1T, and a muon identifier of Resistive Plate Coun-

ters (RPC) interleaved with the magnet yoke plates.

The TOF system is crucial for particle identifi-

cation (PID). It consists of a two-layer barrel ar-

ray of 8850mm×60mm×2320mm BC408 scintillators

in each layer and one-layer endcap array of 48 fan-

shaped BC404 scintillators at each side, the expected

time resolution for two layers is from 100 to 110ps for

kaons and pions, giving a 2σ K/π separation up to

0.9GeV/c for normal tracks.
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The PID ability depends on the time resolution

of TOF system. There are many factors which af-

fect the TOF measurements
[1]

. They can be clas-

sified into two major categories: the un-correlated

parts and the correlated parts. The un-correlated

uncertainty is dominated by the detector resolution.

The correlated uncertainty of TOF measurements is

mainly caused by the beam bunch spread (∼40ps for

BES0), which must be taken into account. In this

paper, we present a correlation analysis in TOF cali-

bration/reconstruction software system
[3]

for BES0.

2 The calibration of TOF measure-

ment in each readout unit

Electrons from 5× 104 generated Bhabha events

are used for calibration. The e+e− → (γ′s)e+e− data

are produced with BHLUMI
[4]

generator, and sub-

jected to a Geant4
[5]

based detector simulation pro-

gram BOOST
[6]

, in which the generation and trans-

port of optical photons in TOF counter are taken into

account. The simulated data are processed in the

BES Offline Software System (BOSS)
[7]

.

2.1 The time-of-flight calibration

The calibration of TOF is proceeded by compar-

ing the measured time tmea = traw − t0 − tcor against

the predicted time texp = L/βc, where traw is the

TDC value recorded by electronics, t0 the event start

time, tcor the correction term; c is the velocity of

light in vacuum, β = p/
√

p2 +m2, the flight veloc-

ity of charged particle, m the particle mass, L and

p are the corresponding flight path and momentum

measured by the MDC(Main Drift Chamber). The

correction term (tcor) is a function of pulse height Q

and hit position z, we take the following empirical

form
[8]

tcor=P0 +
P1 +P2 ·z+P3 ·z2

√
Q

+P4 ·Q+P5 ·Q2+

P6 ·Q3 +P7 ·z+P8 ·z2 +P9 ·z3 +
P10

R2 +z2
+ toffset

0 ,

(1)

where R is the inner radius of TOF detector, Pi(i =

0,1, · · · ,10) are the calibration constants. In Eq. (1),

the P0 represents the delay time, such as cabling,

etc.; the correction function of time walk effect is

represented by the terms containing P1 to P3, then

a polynomial containing P4 to P6 is used to describe

the saturation of PMTs, etc.; while the polynomial

containing P7 to P9 describes the correction to the

effective velocity of light in the scintillator; the term

with P10 is used to correct the effect caused by differ-

ent depths of charged track traversing in scintillator.

The toffset
0 is an additional term to correct the t0 off-

sets run-by-run, which is set to be zero at present.

A χ2 minimization method is applied by defining

a set of

χ2(counter,readout unit) =

events
∑

(tmea− texp)
2, (2)

in each readout unit and counter-by-counter. The

calibration constants, P0 to P10, are obtained from

data by setting the derivative of Eq. (2) with respect

to Pi to zero.

As shown in Fig. 1, the time resolution is improved

from ∼ 251ps to ∼ 118ps. For the calibration of end-

cap counters, the expression of tcor is similar to that

of Eq. (1), only the variable z is replaced by r, the

hit position in radial direction.

Fig. 1. ∆t = tmea − texp distributions: (a) be-

fore and (b) after calibration for one-end of

readout unit of barrel TOF counter.

2.2 The pulse height (Q) calibration

The ionization of a charged particle generates op-

tical photons while traversing the TOF counter. The

resulting photoelectron signal depends on the collec-

tion and transport efficiency of the optical package

and the quantum efficiency of the PMT. Plastic scin-

tillators do not respond linearly to the ionization den-

sity. A widely used semi-empirical formula by Birks

is
[9]

dL

dx
= L0

dE/dx

1+κBdE/dx
, (3)
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where L is the luminescence, L0 the luminescence at

low specific ionization density (dE/dx), and κB the

Birks’ constant, which must be determined for each

scintillator by measurements
[10]

.

The pulse height Qi (raw ADC) at each readout

PMT can be written as:

Q1 = A1×
Q0

sinθ
×exp

(

− l/2+z

Latten

)

,

Q2 = A2×
Q0

sinθ
×exp

(

− l/2−z

Latten

)

,

(4)

where l is the total length of scintillator, z the hit

position in scintillator, Latten the transmission atten-

uation of scintillator, θ the incident angle of charged

track, Q0 the normalized pulse height at z = 0 and

θ = 90◦, Ai(i = 1,2) the amplification coefficient of

PMT. From Eq. (4), we get

log

(

Q1

Q2

)

= log

(

A1

A2

)

− 2z

Latten

. (5)

Latten and A1/A2 can be easily determined from the

calibration data. Thus Q0 could be expressed as

Q0 =
sinθ

A2

×
Q1 exp

(

l/2+z

Latten

)

+Q2 exp

(

l/2−z

Latten

)

1+A1/A2

.

(6)

Using µ-pair events, Ai(i = 1,2) could be adjusted

and normalized counter-by-counter. Here, Q0’s are

supposed to be normalized. As shown in Fig. 2(a),

the distribution of Q0 is skewed toward high value

(Landau tail). Like the dE/dx curve, the variation

of Qpeak with βγ can be calibrated with the hadron,

cosmic ray and radiative Bhabha events to an empir-

ical formula

Qpeak =
P1

βP4

{

P2−βP4 − log

[

P3 +

(

1

βγ

)P5

]}

, (7)

where Qpeak is the maximum probability value of Q0,

βγ = p/m, p and m the corresponded momentum

and mass of charged track, β = p/
√

p2 +m2; the pa-

rameter Pi(i = 1,5) are determined from data. The

Qpeak-curve is drawn in Fig. 2(b), which could be ap-

plied in particle identification with TOF-Q
[11]

and the

time-of-flight offset correction for hadrons
[12]

.

Fig. 2. (a) Q0 distribution for electrons

(p=1.5GeV), the histogram is fitted by a Lan-

dau function. (b) Qpeak varies with βγ(=

p/m), the Qpeak-curve is fitted with the func-

tion described by Eq. (7). In (a), the concen-

tration of Q0 below 100pC is mainly caused

by the hits at the edge of scintillator.

3 The correlated analysis in TOF cal-

ibration

When one charged particle passes through the

barrel array of scintillators, it will produce signals in

one or two layers of TOF counter, corresponding to

two or four measurements for time-of-flight. However,

at BES0 the problem of averaging more than one

TOF measurement becomes complicated since the

distinctive measurements correlate due to the com-

mon event start time. A better choice would be the

weighted average of the different measurements.

3.1 General algorithm

Suppose we have n measurements ti of a particular

time-of-flight. Since the measurements are correlated

we need more information than just the individual

errors. Accordingly, let’s define the covariance ma-

trix Vt, whose terms are given by (Vt)ij = 〈δtiδtj〉,
where δti = ti − t, t is the average of ti. The best

linear estimator for the TOF which accounts for all

measurements, including errors and correlations can

be constructed generally as

t =
∑

i

witi,
∑

i

wi = 1 , (8)

where the weights wi must be found. Writing δt =
∑

i

wiδti and using the definition of the standard de-
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viation, we get

σ2
t =
∑

ij

wiwj(Vt)ij . (9)

To minimize σ2
t

subject to the condition
∑

i
wi =

1, we use the Lagrange multiplier technique. Let’s

write

σ2
t =
∑

ij

wiwj(Vt)ij +λ(
∑

i

wi−1) , (10)

and set the derivative of Eq. (10) with respect to the

wi and Lagrange multiplier λ to zero. This give the

solution

wi =

∑

k
(V −1

t )ik

∑

jk
(V −1

t )jk

. (11)

3.2 Errors and correlations of TOF measure-

ments

The time resolution of TOF (σt) can be factorized

by a production of σt(Q) •σt(z), in which σt(Q) and

σt(z) are functions of the pulse height Q and the hit

position z
[12]

. The variation of σt(Q) is complicated,

which needs the detailed study on the real data. In

this paper, only the z dependent time resolution is

taken into account, since the σt(z)’s are in similar

manners for electrons, muons and hadrons
[12]

. Fig. 3

shows a typical variation of σt(z) in one readout unit

as a function of z from the Bhabha event. The time

resolution becomes worse while the hit position is far

from the readout end.

Fig. 3. The variation of σt(z) for the left-end

and the right-end readout unit in barrel TOF

counter.

The tmea is obtained by calculating the difference

between the end-time and the start-time. The accu-

racy of end-time is limited by the detector resolution;

the precision of start-time is controlled by the uncer-

tainties of t0. Thus for a given barrel TOF counter,

the tmea in the left-end and the right-end readout

units can be decomposed as

t1 = tc +(tD)1, t2 = tc +(tD)2 , (12)

where t1 and t2 represent the tmea’s in two readout

PMTs, tc represents the common part of time be-

tween t1 and t2, (tD)1 and (tD)2 represent the uncor-

related part of t1 and t2. The covariance matrix for

t1 and t2 can be expressed as

Vt =

(

σ2
1 σ2

c

σ2
c σ2

2

)

, (13)

where σ1 and σ2 are the time resolution in the left-end

and the right-end readout units, σc the fluctuation of

tc. According to the definition of covariance matrix,

we have the following expressions

σ2
1 = 〈δt1δt1〉= 〈δtcδtc〉+〈δ(tD)1δ(tD)1〉,

σ2
2 = 〈δt2δt2〉= 〈δtcδtc〉+〈δ(tD)2δ(tD)2〉,

σ2
c = 〈δt1δt2〉= 〈δtcδtc〉,

(14)

by the fact that the correlations 〈δtcδ(tD)1〉 = 0,

〈δtcδ(tD)2〉= 0 and 〈δ(tD)1δ(tD)2〉≈ 0.

To get the σc conveniently, let’s define two new

time variables

t+ =
t1 + t2

2
, t− =

t1− t2
2

. (15)

The fluctuations of t+ and t− can be expressed as

σ2
+ = 〈δt+δt+〉=

σ2
1 +σ2

2

4
+

σ2
c

2
,

σ2
−

= 〈δt−δt−〉=
σ2

1 +σ2
2

4
− σ2

c

2
,

(16)

where σ+ and σ− are the time resolution of t+ and t−.

The σc can be directly extracted by the calculation

of σc =
√

σ2
+−σ2

−
. Fig. 4 shows the distribution of

Fig. 4. Time resolution of t+, t−, tc and the

weighted time t̄ for one-layer of TOF measure-

ment.
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σ+(z), σ−(z) and σc(z), where σc(z) is approximately

a constant, around 40ps. Substituting the special ex-

pression of Eq. (13) into Eqs. (8)—(11), we get

w1 =
σ2

2 −σ2
c

σ2
1 +σ2

2 −2σ2
c

, w2 =
σ2

1 −σ2
c

σ2
1 +σ2

2 −2σ2
c

, (17)

and

σ2
t =

σ2
1

•σ2
2 −σ4

c

σ2
1 +σ2

2 −2σ2
c

. (18)

The resulting σt is drawn in Fig. 4. The average time

resolution for one-layer is about 86ps.

3.3 Combining the time-of-flight from two-

layer measurements

With the Bhabha events, we found that the cor-

relation term σc’s in two layer measurements are the

same value (∼ 40ps). The weighted time-of-flight and

its error in each layer, tLi
and σLi

(i = 1,2), can be de-

termined from Eqs. (8), (17) and (18). Similar to the

method adopted for one-layer measurement, we can

construct the covariance matrix for two-layer mea-

surements as follows

Vt =

(

σ2
L1

σ2
Lc

σ2
Lc

σ2
L2

)

, (19)

where σLc
is the correlation between two-layer mea-

surements.

Substituting t1, t2 with tL1, tL2 in Eqs. (12) and

(15), we can get the corresponding errors and corre-

lations. The calculations of the σ+, σ− and σLc
are

illustrated in Fig. 5. The correlation between two-

layer measurements is almost a constant, ∼ 40ps. It

agrees fairly well with the results from the two-end

measurements in each layer. Thus, we have σLc
= σc.

Fig. 5. The correlations between two layer

TOF measurements, where σLc
(z) =

√

σ2
+(z)−σ2

−
(z).

The weighted time-of-flight of two-layer measure-

ments can be easily obtained by applying the covari-

ance matrix of Eq. (19) in Eq. (17). The result-

ing tmea − texp are drawn in Fig. 6(a). The average

time resolution from two-layer measurements is about

68ps, a little bit worse than 86/
√

2≈ 61ps, where the

value of 86ps is the average time resolution of one-

layer measurement.

Fig. 6. ∆t = tmea − texp distribution: (a) t̄ is

weighted by t̄Li
(i = 1,2), t̄Li

’s are the aver-

age time in each layer which is weighted by

tEi
(i = 1,2), tEi

’s are the TOF measurements

in each end of readout units; (b) t̄ is directly

weighted by tEi
(i = 1,2, · · · ,4), tEi

’s are the

TOF measurements in the four-end of read-

out units.

The apparatus of barrel TOF array can be treated

in such a way that the four independent readout

PMTs can measure the time-of-flight for a charged

particle. The covariance matrix of TOF measure-

ments can be constructed as

Vt =















σ2
1 σ2

c σ2
c σ2

c

σ2
c σ2

2 σ2
c σ2

c

σ2
c σ2

c σ2
3 σ2

c

σ2
c σ2

c σ2
c σ2

4















. (20)

In Eq. (20), σi(i = 1,2, · · · ,4) are the resolution of all

readout units, the correlations (σc) between different

measurements are taken as the same value (∼ 40ps)

by the fact that cEE = cLL, where cEE’s are the corre-

lation between the two-end of readout units in each

layer, cLL is the correlation between two-layer mea-

surements. Employing the covariance matrix Eq. (20)

in Eqs. (8)—(11), the weight factors wi(i = 1,2, · · · ,4)

can be easily calculated. The resulting tmea−texp dis-

tribution is drawn in Fig. 6(b).

As shown in Fig. 6(a) and 6(b), the resulting time

resolutions from two weighted methods are consis-

tent. The standard weighted method adopted in TOF

calibration/reconstruction software system of BES0
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will be in two steps: combining the two-end TOF

measurements in each layer; calculating the weighted

time from the two-layer measurements.

3.4 Run-by-run t0 offsets correction

The calibration needs a large data sample during

detector running. Several data runs will be combined

to provide a calibration sample. The t0 often varies

in a period of particular data taking, it must be taken

into account
[8]

in TOF calibration. To get the t0 off-

sets correctly, the data samples are grouped run-by-

run after the calibration of each readout unit, then

subjected to an algorithm developed in Ref. [13] to

extract the t0 event-by-event precisely. The average

value of t0 in each run will return back to Eq. (1) as

an additional correction term toffset
0 .

4 Summary

The reliable particle identification requires the

properly combination of two-layer TOF measure-

ments, especially in the apparatus of BES0 barrel

TOF array where the correlations (∼40ps) between

TOF measurements in each readout unit are sizable

compared with the intrinsic time resolution of the

detector(∼110ps per readout unit).

The errors and correlations of TOF measure-

ments are investigated with the simulated electron-

pair events in calibration. The elements of resulting

covariance matrix are consistent well with the input

parameters in the detector simulation. The Monte

Carlo studies show that the common errors due to

the uncertainty of t0 can be properly extracted from

electron-pair events in one particular run. With the

time resolution function σt(Q,z) obtained from the

desired samples, the covariance matrix for hadrons

can be easily constructed. Thus, we can apply the

correlation analysis for hadrons in TOF particle iden-

tification.

The authors gratefully acknowledge Dr. JIANG

Lin-Li for his contributions to the TOF reconstruc-

tion software.
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