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Abstract With the coupled Dyson-Schwinger equations in the framework of the unified QED3 theory, we

study the phase transition between the antiferromagnet(AF) and the d-wave superconductor (dSC) of planar

cuprates at T=0. By solving the coupled Dyson-Schwinger equations both analytically and numerically in

rainbow approximation in Landau gauge and comparing the obtained results with that given in the 1/N

expansion, we find that there exists a chiral symmetry breaking from dSC phase to AF phase when the quasi-

fermion flavors N . 4 in half-filling and the AF phase can possibly coexist with the dSC phase in the underdoped

region. By comparing the pressure between the coexistent AF-dSC phase and dSC phase, we find that AF-dSC

coexisting phase is the stable phase, the AF phase can then coexist with the dSC phase.

Key words dynamical chiral symmetry breaking, QED3, Dyson-Schwinger equation, phase structure and

phase transition of cuprate superconductor, d-wave superconductivity, antiferromahnet

1 Introduction

Recently, the interplay between the antiferro-

magnet(AF) phase and superconductivity remains

one of the central themes in the physics of high-

Tc cuprates[1—3]. An appealing connection between

AF and d-wave superconducting (dSC) phases has

been discussed, based on the ideas originally ar-

ticulated by Emery and Kivelson[4]. When long

range dSC phase is destroyed by thermal or quan-

tum vortex-antivortex fluctuations[5, 6], the resulting

state can be either a symmetric algebraic Fermi liq-

uid (AFL phase, i.e., pseudogap phase)[7, 8] or, if the

fluctuations are sufficiently strong, an incommensu-

rate antiferromagnet[9—11]. In the latter case, AF

phase(spin density wave phase) arises through an in-

herent dynamical instability of the underlying effec-

tive low energy theory of a phase fluctuating d-wave

superconductor, a (2+1) dimensional quantum elec-

trodynamics, QED3
[7, 8]. This instability is known as

the spontaneous chiral symmetry breaking. Exper-

iments have found tantalizing hints of such coexis-

tence in zero applied magnetic field in Y and La based

cuprates[12—15]. It has been shown previously[16] that,

in the framework of QED3, such a coexistence can oc-

cur locally in the vicinity of fluctuating field-induced

vortices[17], as found in the experiments of neutron

scattering[13], muon-spin resonance[18] and scanning

tunneling microscopy[19].

It has been known that Dyson-Schwinger (D-S)

equation approach provides a nonperturbative frame-

work which admits simultaneous study of chiral
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symmetry breaking and confinement[20, 21]. With the

chiral symmetry preserved nonperturbative trunca-

tion, this model has been widely used to study the

properties of strong interaction vacuum and hadrons

in free space and in medium (in the framework of

QCD)[22, 23] as well as those of electrodynamic inter-

action (in the framework of QED)[24—27], and to sim-

ulate the chiral symmetry restoration and deconfine-

ment in the system with finite temperature and/or

finite chemical potential[23]. By implementing the

1/N expansion technique, Franz and collaborators

have solved the D-S equation in the framework of

QED3 under leading order approximation of 1/N ex-

pansion, i.e., taking the inverse of the fermion prop-

agator in the form S−1(p) = iγ •p+Σ(p), Π(p) = α/p,

and shown that the chiral symmetry breaking could

take place even the gauge field has a small mass m
[17].

It opened up a possibility for the coexistence of bulk

AF and dSC phases in the QED3 theory of under-

doped cuprates. However, it is important to take into

account the wave function renormalization, the self-

energy, and the full gauge boson polarizaion. Fur-

thermore, the inverse of the fermion propagator is

usually decomposed as S−1(p) = iγ •pA(p)+B(p). It

leaves a room to investigate the phase structure and

phase transition of the underdoped cuprates by solv-

ing the D-S equations with the general expression of

the fermion propagator. Moreover, the stability of

the coexistent phase of the AF and the dSC has not

yet been analyzed in the view of thermodynamics.

We then try to shed light on these problems in this

paper.

The paper is organized as follows: In Sec. 2 we

describe briefly the unified QED3 theory of cuprate

superconductors. In Sec. 3 we investigate phase struc-

ture and the phase transition from dSC order to AF

order of cuprate superconductors by solving the cou-

pled Dyson-Schwinger equations. In Sec. 4 we discuss

the coexistence of AF order and dSC order through

the chiral symmetry breaking point. In Sec. 5, we

analyze the stability of the coexistent phase of AF

order and dSC order in the point of thermodynamics.

Finally, we give a summary and brief discussion on

our results in Sec. 6.

2 The framework of the QED3 theory

of a cuprate superconductor

It has been known that the d-wave superconduct-

ing state can be taken as the starting point to con-

struct the general feature of the phase diagram of

high-Tc cuprate superconductor[8, 9]. Amongst these,

none is more prominent than the Neel antiferromag-

netic insulator very near half-filling. A d-wave su-

perconductor whose phase coherence has been de-

stroyed by unbinding of quantum vortex-antivortex

pairs indeed becomes an antiferromagnet. The anti-

ferromagnetism arises naturally through an inherent

dynamical instability of QED3, known as the sponta-

neous chiral symmetry breaking (CSB)[28], and most

typically takes the form of an incommensurate spin-

density-wave (SDW), whose periodicity is tied to the

Fermi surface.

Within the QED3 theory of the superconduc-

tivity[8, 9], the dynamical agent responsible for the

emergence of AF order is a noncompact U(1) Berry

gauge field Aµ which encodes the topological frustra-

tion encountered by the nodal fermions as they prop-

agate in the background of the fluctuating vortex-

antivortex plasma. In the non-superconducting

phase, the Berry gauge field is massless[7—9]. Its

quanta, “Berryons”, have the same effect as photons

in ordinary QED3: they mediate long range interac-

tions between fermions and lead to the chiral insta-

bility if the number of quasi-fermion species N (pairs

of Dirac nodes per unit cell in a dSC, generally N=2)

is less than a critical value, In the dSC phase, as the

vortices bind to finite pairs or loops, the Berry gauge

field becomes massive[7—9].

This theory has been used as a continuum descrip-

tion of the competition between long range antiferro-

magnetic phase and superconducting phase in planar

cuprate system. In Euclidean space, the Lagrangian

of the general QED3 for the massless fermion with N

flavors in a general covariant gauge can be written

as[29]



第 2期 梁小凤等：手征对称性动力学破缺和铜氧化物超导体相变的三维量子电动力学研究 211

L =LQED3 +
1
2
DµΦ∗DµΦ−λ(Φ∗Φ−Nv)2, (1)

with

LQED3 =
1
4
F 2

µν +
N∑

l=1

Ψ̄l(i 6∂−e 6A)Ψl , (2)

where the 4-component spinor Ψl is the fermion field

and l = 1, · · · ,N are indices of the species of the

fermion field. Φ is a complex scalar field with vacuum

expectation value v. The addition of the scalar field

does not change the global symmetry structure of the

theory. We remove the Higgs boson from the spec-

trum by taking the limit λ →∞ with v fixed. This

leaves the theory ultraviolet complete. The Berry

gauge boson mass is m = e
√

Nv.

3 Phase transition from dSC order to

AF order at half-filling

Starting from a d-wave superconducting phase,

as one moves closer to half-filling at T=0, true

phase coherence is lost. Strong vortex-antivortex

pair fluctuations, acting under the protective um-

brella of a d-wave particle-particle (p-p) pseudogap,

spontaneously induce formation of particle-hole (p-

h)“pairs”. The glue that binds these p-h “pairs”

and plays the role of “phonons” in this pairing anal-

ogy is provided by the massless Berry gauge field

Aµ. Remarkably, the antiferromagnetic insulator is

spontaneously generated in the form of the incom-

mensurate SDW. It seems therefore reasonable to ar-

gue that this SDW must be considered as the pro-

genitor of the Neel-Mott-Hubbard insulating antifer-

romagnet at half-filling[10].The low-energy theory for

the coupled system of d-wave quasiparticles and fluc-

tuating vortices can take the forms of the (2+1)-

dimensional quantum electrodynamics (QED3) for

two flavor Dirac four-component spinors. In order to

investigate the dynamical chiral symmetry breaking

of the dSC order, we firstly study the general property

of QED3 with N flavor Dirac fermions and massless

gauge bosons, then compare the critical fermion fla-

vors Nc with N=2 to determine the arise of chiral

phase transition of the dSC phase. The Lagrangian

for massless Aµ with N Dirac spinors in the three di-

mensional Euclidean space is just the one in Eq. (2).

The Dyson-Schwinger (D-S) Equation for the

fermion propagator is given by

S−1(p)= S−1
0 (p)+e2

∫
d3k

(2π)3
γµS(k)Γν(p,k)Dµν(q) .

(3)

For the Berryon propagator we also have a D-S

equation, namely

D−1
µν (q)= D−1

0 µν(q)−Πµν(q) . (4)

Without introducing unknown functions, it is more

convenient to write the Berryon propagator in terms

of the vacuum polarization tensor Πµν(q) as

Πµν(q) = e2

∫
d3k

(2π)3
tr [γµS(k)Γν(k,p)S(p)] . (5)

The full fermion propagator is usually written as

S−1(p)= iγ •pA(p)+B(p) , (6)

and the full Berryon gauge boson propagator is given

by

Dµν(q)=
δµν−qµqν

q2[1+Π(q)]
−ξ

qµqν

q4
, (7)

where ξ is the gauge parameter, and Π(q) is the vac-

uum polarization for Berryon, defined by

Πµν =(q2δµν−qµqν)Π(q) . (8)

QED3 is a super-renormlizable theory and it

does not suffer from the ultraviolet divergence that

emerges in four-dimensional QED(QED4). It has an

intrinsic mass scale given by the dimensional gauge

coupling α = e2N/8, which plays a role similar to the

scale parameter ΛQCD in QCD. In the leading order of

1/N expansion, it was found that, at large momenta

(pÀα), the effective coupling between fermions and

gauge bosons vanishes (asymptotic freedom), whereas

it has a finite value or an infrared stable fixed point

at p ¿ α
[28]. Early investigations indicate that the

chiral symmetry can be broken only if the number

of fermion flavors N (i.e., the pairs of fermion nodes

in planar cuprates) is smaller than a critical value,

Nc = 32/π2 ≈ 3.2, in the leading order in Laudau

gauge[26] and Nc = 4/3(32/π2) in the next to leading

order corrections in a nonlinear gauge[30]. These re-

sults have been questioned in Refs. [31, 32], where it

was argued that the 1/N expansion method is not ap-

propriate for studying the nonperturbative phenom-
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ena, and it was found that chiral symmetry is broken

for all values of N , although the generated mass scale

is exponentially decreasing with increasing N . More

detailed investigations with the coupled set of D-S

equations for the fermion and photon propagators

being solved show that there exists a critical num-

ber of flavors Nc ≈ 4 for the phase transition to take

place[27, 33].

We will take a method similar to that of Maris and

collaborators[27, 33] to solve the D-S equations here.

For simplicity, we consider the bare vertex, and make

use of Landau gauge. From the coupled integral of

Eqs. (3) and (4), we obtain

A(p)= 1+
2e2

p2

∫
d3k

(2π)3
A(k)(p •q)(k •q)
A2(k)k2 +B(k)2

1
q4(1+Π(q))

,

(9)

B(p)= 2e2

∫
d3k

(2π)3
B(k)

A2(k)k2 +B(k)2
1

q2(1+Π(q))
,

(10)

Π(q)=
2Ne2

q2

∫
d3k

(2π)3

(
2k2−4k •q− 6(k •q)2

q2

)
×

A(k)
A2(k)k2 +B2(k)

A(p)
A2(p)p2 +B2(p)

, (11)

with qµ = pµ−kµ.

It has been shown that the infrared behavior of

QED3, at least in Landau gauge, is dominated by

power laws for the chiral symmetric phase[33]. Here

we will investigate the chiral symmetry broken phase

with fermion flavors N close to the critical value Nc of

the phase transition (Assuming that there is a chiral

symmetry broken phase, and a corresponding Nc). In

this region the dynamically generated fermion mass

will be extremely small compared to α. The momen-

tum range B(0) ¿ p ¿ α dominates the integral on

the right-hand side of the D-S equations for the A(p),

B(p) and Π(q). We then start from a power law

ansatz for the vector dressing function A(p) = cp2a,

where a is the anomalous dimension of fermion vec-

tor dressing function to discuss the solution of the

D-S equation.

Near the phase transition point, B(0)→ 0, there

exists infrared divergences in Eqs. (9), (10) and (11),

we introduce then a dimensional regularization to

avoid this problem. Firstly we derive the power law

of Berryon polarization, after substituting A(p) into

Eq. (11), with the help of dimensional regularization,

we arrive at

Π(q)=
8α

π3/2c2

Γ (3/2−a)2Γ (2a+1/2)
Γ (a+1)2Γ (3−2a)

q−(1+4a) . (12)

To analyze the D-S equation of the fermion, we as-

sume a >−1/4 (for Π(q2 → 0) is infinte). The above

discussion once shows that there holds p¿α for the

Berryon dressing, we have then

1
1+Π(p)

≈Π(p)−1 . (13)

Together with Eq. (9), we obtain

cp2a =1+f(a)p2a , (14)

where

f(a)=
c(a+1)

4N
×

Γ (a+1)Γ (3−2a)Γ (2a)Γ (1−a)
Γ (3/2−a)Γ (2a+1/2)Γ (3/2−2a)Γ (5/2+a)

, (15)

where the “1” at the right hand side of Eq. (14) corre-

sponds to a renormalization constant, and has to be

canceled by a cut-off in infrared region or by dimen-

sional regularization. Comparing with A(p) = cp2a,

we obtain

N =
(a+1)

4
×

Γ (a+1)Γ (3−2a)Γ (2a)Γ (1−a)
Γ (3/2−a)Γ (2a+1/2)Γ (3/2−2a)Γ (5/2+a)

. (16)

Next we investigate the chiral symmetry broken

phase close to the critical value Nc of the phase tran-

sition. Assuming that the vector dressing function

A(p) of the fermion and the vacuum polatization

function Π(p) of the Berryon are continuous from the

phase transition point and the dynamically generated

fermion mass is extremely small compared to α, fol-

lowing the method of Appelquist[26], i.e., setting the

dominant integral range as B(0)¿ p¿α, we have

B(p)= g(a)
(∫p

B(0)

B(k)p4a−1

k4a
dk+

∫α

p

B(k)
k

dk

)
, (17)

where

g(a)=
Γ 2(a+1)Γ (3−2a)

Nπ1/2Γ 2(3/2−a)Γ (2a+1/2)
. (18)

This integral equation is equivalent to a differential

equation

d
dp

(
p2−4a dB(p)

dp

)
−g(a)(4a−1)p−4aB(p)= 0 , (19)
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with boundary condition

B(0)> 0 , (20)

[
p
dB(p)

dp
+B(p)

]∣∣∣∣
p=α

=0 . (21)

In the linear regime B(p) ¿ α, from the integral

Eq. (17), we obtain both the chiral symmetric so-

lution B(p)≡ 0 and the nontrivial solution as

B(p)∼ pb , (22)

where

b =
−1+4a±

√
(1−4a)2 +4(4a−1)g(a)

2
. (23)

It is apparent that the value of the square root in

Eq. (23) can be taken as a criterion of phase transi-

tion. Letting this value be zero and using Eqs. (16)

and (18), we reproduce the critical number of fermion

flavors (pairs of fermion nodes) Nc=3.962 given in

Ref. [33].

An explicit numerical solution of Eq. (16) is shown

in the left panel of Fig. 1. For the sake of compari-

son we also display the anomalous dimension for the

case of leading approximation of 1/N expansion. It

has been argued in Refs. [31, 34] that A(p)' (p/α)a

with a =
8

3Nπ2
. The left panel of Fig. 1 indicates

evidently that the two curves fit very well when N is

very large. It is not surprising that the two curves

deviate from each other in the range of small N since

the 1/N expansion is a perturbative method.

To check the above analysis, we solved the cou-

pled Eqs. (9), (10) and (11) numerically. The ob-

tained vector dressing functions A(p) of the fermion

at several fermion flavors N of the chiral symmetric

phase (i.e., with B(p)≡ 0) are illustrated in the right

panel of Fig. 1, The figure shows evidently that the

numerically obtained vector dressing function A(p) of

the fermion in the chiral symmetric phase is in good

agreement with the power law ansatz in the infrared

region. It is also apparent that the power law behav-

ior is not valid in the ultraviolet region. Furthermore,

we have also solved the coupled D-S equations in the

chiral symmetry broken phase numerically. The ob-

tained variation behavior of the dynamical mass of

M(p2) = B(p2)/A(p2) at p2 = 0 with respect to the

flavors of the fermion is shown in Fig. 2. From Fig. 2,

one can easily recognize that the critical fermion fla-

vors Nc=3.6 and the above analytical result agrees

with that given by solving the coupled D-S equations.

Meanwhile, the dynamical mass for the same N ob-

tained in our present calculation is larger than the one

given in the 1/N expansion, and so does the critical

value Nc. In addition, we display the solutions A(p)

and B(p) of the chiral symmetry broken phase in the

upper row of Fig. 3. It is obvious that, in the chiral

symmetry broken phase, A(p) is of the order 1, and

varies slowly with the growth of momentum. Such a

behavior is definitely distinct from that of the chiral

symmetric phase. Besides, in the ultraviolet range

all curves follow their respective asymptotic limits.

On the other hand, we can clearly notice two distinct

mass scales where the fermion dressing function A(p)

has a kink near p = e2 and the B(p) holds also a kink

at p∼M(0).

Fig. 1. Left-panel: The anomalous dimension

of the vector dressing function of the fermion

from our infrared analysis, compared with

that under the leading order approximation of

1/N expansion. Right-panel: The numerically

obtained dressing function A(p) of the fermion

in the chiral symmetry phase for N =1.5,2,3,

and 3.6, (the scale is set by choosing e2=1).

Fig. 2. Numerical result of the dynamical

fermion mass M(p2 = 0) = B(p2 = 0)/A(p2 =

0) as a function of the fermion flavor N and

the comparison with those under leading order

approximation of 1/N expansion (the scale is

set by choosing e2=1).
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Fig. 3. Numerical solutions of the self-energy

functions A(p) and B(p) and the compari-

son with those under leading order approxi-

mation 1/N expansion in the chirally broken

phase. The upper two are for those with N=2,

m=0, and the lower two for those with N=2,

m=0.005 (the scale is set by choosing e2=1).

The above discussion shows obviously that the D-

S equation of the quasi-fermion has two solutions.

One is the Wigner solution, B(p)≡ 0, which describes

the chiral symmetry phase and the quasi-fermions are

massless and not confined. The corresponding phase

can then be the d-wave superconductive. The other is

the Nambu solution, which depicts the chiral symme-

try breaking phase and the quasi-fermions are massive

and confined. Such a phase corresponds to, in turn,

the antiferromagnetic insulator which is confined by

the gauge field in the presence of chiral symmetry

breaking. The possibility of the chiral phase transi-

tion for integer fermion flavor number N=2 displayed

in Fig. 2 indicates that the dSC phase can shift to

the AF phase of cuprate superconductors by a spon-

taneous chiral symmetry transition at half-filling at

T=0. The transition from the dSC phase to the AF

phase may be understood as an instability of the gap-

less nodal fermionic excitation in the presence of free

topological defects towards the formation of bound

states[17].

4 Possibility of coexistence of AF

phase and dSC phase

In the last section, we discuss the solutions of

the D-S equations and the dependence of the quasi-

fermion mass on the fermion flavor in the case of

massless Berryon (i.e., gauge boson). Next we an-

alyze the effect of the Berryon mass on the genera-

tion of the quasi-fermion mass. In the dSC phase, the

vortex-antivortex pairs are not fully destroyed, they

bind to finite pairs of loops, then the Berry gauge

field becomes massive. Based on the full coupled

D-S equations, we find the solutions with dynami-

cal chiral symmetry breaking and finite fermion mass

even as the gauge boson acquires a small mass m,

which means that the AF phase can possibly coex-

istent with dSC phase. It has been known that the

massive Berryon propagator is generally a little dif-

ferent from the massless one (in Eq. (7)) and can be

written as

Dµν(q)=
δµν−qµqν

q2 +qΠ(q)+m2
−ξ

qµqν

q4
. (24)

After some derivation in Landau gauge with ξ=0,

we have a set of coupled equations for the self-energy

functions A(p) and B(p) in the fermion propaga-

tor and the vacuum polarization Π(q) of the gauge

Berryon as

A(p) = 1+
2e2

p2

∫
d3k

(2π)3
A(k)(p •q)(k •q)
A2(k)k2 +B(k)2

×
1

q2(q2 +q2Π(q)+m2)
, (25)

B(p) = 2e2

∫
d3k

(2π)3
B(k)

A2(k)k2 +B(k)2
×

1
(q2 +q2Π(q)+m2)

, (26)

Π(q) =
Ne2

q2

∫
d3k

(2π)3

(
2k2−4k •q− 6(k •q)2

q2

)
×

A(k)
A2(k)k2 +B2(k)

A(p)
A2(p)p2 +B2(p)

, (27)

where qµ = pµ− kµ. It is evident that, with a mas-

sive gauge field, the simple power-law ansatz is no

longer appropriate to solve the coupled Eqs. (25),

(26) and (27). The coupled equations also have a

chiral symmetric solution B(p) ≡ 0 for all N . We

then solve the coupled equations numerically to find

chiral symmetry broken solutions with an upper mo-

mentum cutoff Λ > α. Practical calculation indi-

cates that the obtained results have no dependence

on the cutoff Λ. The obtained results of the A(p)

and B(p) in the case of gauge boson possessing a



第 2期 梁小凤等：手征对称性动力学破缺和铜氧化物超导体相变的三维量子电动力学研究 215

small mass are displayed in the lower row of Fig. 3.

It is evident that the behavior of the solutions A(p)

and B(p) at massive gauge boson is quite similar to

that of the solution when the gauge boson is massless,

though their values are comparatively smaller. The

obtained dependence of the critical fermion flavors

on the Berryon mass and the dynamical mass of the

fermion M(p2 = 0) = B(p2 = 0)/A(p2 = 0) as a func-

tion of the Berryon mass in the case of fermion fla-

vors N=2, which corresponds to the fermion species

in cuprate superconductor, are illustrated in Fig. 4,

Fig. 5, respectively.

Fig. 4. Numerical result of the critical flavor of

fermion as a function of the Berryon mass m

(the scale is set by choosing e2=1) and the

comparison with that under the leading order

approximation of 1/N expansion.

Fig. 5. Numerical solution of the dynamical

fermion mass M(p2 = 0) = B(0)/A(0) for

fermion flavors N=2 as a function of the

Berryon mass m (the scale is set by choosing

e2=1) and the comparison with that under the

leading order approximation 1/N expansion.

From Fig. 4, one can recognize evidently that

there exists merely a chiral symmetric solution for

all N when m > 0.160e2. It means that, for a given

Berryon mass m, if N is less than the correspond-

ing Nc, there exists a dynamical mass M = B/A,

i.e., the chiral symmetry is broken. Whereas, there

is no dynamical mass for any N if m > 0.160e2.

We also found that for all Berryon mass the criti-

cal number of fermions N is larger than that given

in the 1/N expansion, which means that the A(p)

and Π(p) play important roles in the formation of

the phase structure. More concretely, from the rela-

tion between the dynamical mass at zero momentum

M(0) = B(0)/A(0) and the Berryon mass m in the

cases of fermion number N=2, which we really care

about for the cuprates, shown in Fig. 5, one can no-

tice that the “topological” fermion can gain a mass

through spontaneous chiral symmetry breaking in the

presence of a small gauge boson mass. With the in-

creasing of the Berryon mass, the topological fermion

mass decreases rapidly. When m→ 0.046e2, M(0) de-

creases by eight orders compared with the neighbor-

ing value, i.e., an extremely rapid variation emerges.

We can then regard it as the critical Berryon mass

for the phase transition to take place. Furthermore,

when m> 0.046e2, there is merely a chiral symmetric

solution M(p)≡ 0.

Looking over Fig. 5, one may infer that the mass

of the quasi-fermion is not a constant but varies with

the mass of the gauge boson. Since the dynamical

mass of a fermion results from the chiral symmetry

breaking, the variance of the fermion mass indicates

that the breaking of the chiral symmetry is not at the

same level. It has been well known that the conden-

sate of the fermion is a order parameter to identify

the chiral symmetry breaking. We then evaluate the

fermion condensate, which reads

〈ψ̄ψ〉=−TrS(p)=−4
∫

d3p

(2π)3
B(p)

A2(p)p2 +B2(p)
. (28)

The obtained ratio of the fermion condensate at fi-

nite gauge boson mass to that with massless gauge

boson is illustrated in Fig. 6. Fig. 6 shows apparently

that the ratio of the fermion condensates decreases

monotonously from 1 to 0 as the mass of the gauge bo-

son increases from 0 to 0.046e2. The deviation of the

fermion condensates’ ratio from 1 at nonzero gauge

boson mass manifests the chiral symmetry is broken

partially, or the chiral symmetry is partially restored.

One can then infer that there may exist a phase for

the AF phase and dSC phase to coexist.
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Fig. 6. The ratio of chiral condensate of co-

existent AF-dSC phase as a function of the

Berryon mass m(the scale is set by choosing

e2=1).

5 Stability of the AF and dSC coex-

isting phase

Recalling the above discussion, one can recognize

that, when the gauge boson (or the Berryon) is mas-

sive, there may exist a dSC phase and a dSC-AF co-

existing phase. To determine which is the practically

appearing phase, we should explore the stability of

the two phases. We implement then the equilibrium

statistical field theory. It has been shown that such

a theory can yield the D-S equations in a straightfor-

ward manner[35]. More than that, all the thermody-

namic functions can be obtained from the partition

function[23]. The thermodynamic potential and pres-

sure densities are

−ω(T )= p(T )=
1

βV
lnZT , (29)

where βV is the four-volume normalising factor. The

stable phase of the system is that in which the pres-

sure is maximal or equivalently the thermodynamic

potential energy is minimised.

A simple estimate of the pressure due to the

dressed-fermions can be obtained via the “steepest

descent” approximation[36, 37], which yields

pΣ(µ,T )=
1

βV

{
TrLn[βS−1]− 1

2
Tr[Σ S]

}
, (30)

where S is the solution of the gap equation with Σ

the associated self energy, and “Tr” and “Ln” are ex-

tensions of “tr” and “ln” to matrix-valued functions.

Eq. (30) is just the auxiliary field effective action[36] or

CJT effective action[38], which yields the free fermion

pressure in the absence of interactions when Σ ≡ 0.

At this level of truncation, the total pressure receives

an additive contribution from dressed-gauge bosons:

p∆(µ,T )=− 1
βV

1
2
TrLn

[
β2D−1

µν

]
, (31)

where Dµν is the dressed T 6= 0 gauge boson 2-point

function, and this yields the free- gauge boson pres-

sure in the absence of interactions.

In our study, we consider the situation of temper-

ature T → 0. The total pressure of the system is the

sum of the fermion pressure and the Berryon pressure.

The obtained result of the pressure difference between

the AF-dSC coexisting phase and the dSC phase as

a function of the gauge boson mass m is illustrated

in Fig. 7. From Fig. 7, one can realize clearly that

the pressure of the coexistence of AF-dSC phase is

larger than that of the dSC phase and their differ-

ences become less with the increase of gauge boson

mass. Therefore, the AF phase can coexist with dSC

phase in view of thermodynamics. Moreover, the co-

existent AF-dSC phase is a mixed phase of the chiral

symmetric and the chiral symmetry breaking. When

the gauge boson mass is zero, the chiral symmetry

is broken, and the system is in AF phase. With the

increase of the gauge boson mass, the effect of chiral

symmetry breaking becomes weaker, so that the AF

phase coexists with the dSC phase. In other word,

the AF-dSC coexisting phase is a chiral symmetry

partially restored phase. As the gauge boson mass

approaches to the critical mass mc =0.046e2, the chi-

ral symmetry can be restored completely, then the

system is in the dSC phase.

Fig. 7. The difference of pressure pcoe−pdsc as

a function of the Berryon mass m between co-

existent AF-dSC phase and dSC phase(N=2,

and the scale is set by choosing e2=1).
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6 Summary and discussion

In the framework of a unified QED3 theory

at low energy, we investigate the dynamical chi-

ral symmetry breaking of cuprate superconductors

by solving the Dyson-Schwinger equations thor-

oughly. We then explain the phase transitions be-

tween the antiferromagnetic(AF) phase and the d-

wave superconducting(dSC) phase based on the so-

lutions of the Dyson-Schwinger equations. The cal-

culated results show that the AF order arises from

phase fluctuating d-wave superconductor via sponta-

neous chiral symmetry breaking, provided that the

fluctuations are strong enough( the gauge boson mass

m = 0). With the increase of gauge boson mass from

zero to m< 0.046e2, the AF phase and the dSC phase

coexists in the point of view of thermodynamics. Such

a coexistent AF-dSC phase is the chiral symmetry

partially restored phase, where the AF phase is a chi-

ral symmetry broken phase and the dSC phase is a

chiral symmetric phase. In this region the system

remains superconducting while fermionic excitations

become fully gapped. The small gap should be ob-

servable in thermodynamic and transport measure-

ments.

It should be mentioned that the QED3 theory

we implemented in the present work does not take

into account the Dirac cone anisotropy αD = vF/v∆

of cuprate superconductors. Intuitively one would

expect that Nc decreases with increasing anisotropy

because the phase space for the interactions that ulti-

mately drive the chiral symmetry breaking is reduced

as the overlap between the two pairs of Dirac cones

with opposite anisotropy diminishes. Another prob-

lem is the deficiency of rainbow approximation in our

calculation. The rainbow approximation violates the

Ward-Takahashi identity and therefore loses gauge

covariance. In order to ensure gauge covariance,

transverse structure of the fermion-Berryon vertex is

needed. All of our discussions are the applications of

D-S equations at zero temperature, we need to con-

sider the effect of finite temperature for the practical

system. The related investigations are now under

progress.

The authors are indebted to Professor Xiao-fu Lü

for his stimulating discussions.
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摘要 利用三维量子电动力学理论中的Dyson-Schwinger方程方法, 研究了零温情况下平面铜氧化合物超导体

的反铁磁相和d波超导相之间的相变. 通过在朗道规范下近似解析求解和数值求解完全耦合的Dyson-Schwinger

方程、并将所得结果与1/N展开方法的结果相比较, 发现在半填充准费密子味道数约小于等于4的情况下, 通过

手征对称性自发破缺, d波超导相可以演化到反铁磁相, 并且反铁磁相有可能与d波超导相共存. 通过进一步比

较不同相的压强, 还说明反铁磁与d波超导共存相为稳定相, 从而反铁磁相确实可以与d波超导相共存.
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