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Abstract The proposed beam energy measurement system at BEPC/ is composed of three parts: the laser

source and optics system, the laser-electron interaction system and the HPGe detector system. The working

principles of each system are expounded together with the calculation for preliminary design. The normaliza-

tions of laser and electron beams are put forth and used for the evaluation of intensity of the backscattering

photon. The simulation of HPGe detector is also performed for understanding the working properties.
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1 Introduction

The large data sample to be collected at BESIII

is typically a few fb−1[1];2), unprecedented statisti-

cal precision will be achieved in data analysis, hence

many systematic factors and effects have to be consid-

ered seriously in order to obtain comparable correct-

ness with precision. As pointed out in Ref. [2] the un-

certainty of the beam energy plays an important role

for BES0 physics analysis in many aspects. First of

all, the detailed Monte Carlo simulation indicates[3, 4]

that the uncertainty due to the beam energy will be

the bottleneck issue for the accuracy improvement of

τ mass measurement. Second, such kind of uncer-

tainty is the crucial part for the further high accu-

rate measurement of resonance parameters at BES0.

Last, small systematic uncertainty of the beam energy

is also an independent factor for the improvement of

branching ratio measurement aiming at the accuracy

of 1%—2%.

Therefore, it is proposed to adopted the technique

based on the Compton backscattering principle to di-

rectly measure the beam energy accurately3). The

detection system is determined to be allocated at the

north interaction point (IP) of the storage ring4) as

shown in Fig. 1 and Fig. 2.

Fig. 1. Scheme of BEPCII storage ring. The
interaction point (IP) is located at the south
cross point of the storage ring while the en-
ergy measurement system is allocated at the
north.
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(shortened as energy detector in Fig. 1) is composed

of the following parts (classified for easy understand-

ing of the general mechanism of the whole system):

1) Laser source and optics system;

2) Interaction region where the laser beam collides

with the electron or positron beam;

3) High purity Germanium detector (HPGe) to

measure the backscattering high energy γ-rays or X-

rays.

In the following studies, we will describe each sys-

tem. In the end, the energy measured at the north

IP should be corrected for the synchrotron radiation,

which is at level of 200 keV, and the corresponding

error is less than 10% or equivalently 20 keV.

Fig. 2. The principle layout of energy measure-
ment system. Two long curves denote the
positron and electron projectiles. The bottle-
like box (A) indicates the laser source; the
circled dot (B) indicates the HPGe detector;
rectangles (C) denote magnets; a indicates a
half-transmission and half-reflection lens; b’s
indicate reflective lens and f ’s the focusing
lens.

2 Laser and optics system

2.1 Laser beam

The electric field distribution of the fundamen-

tal mode (TEM00) of oscillation of a stable cavity

is a Gaussian. Without losing generality, we start

from the TEM00 mode Gaussian beam, where TEM

is the abbreviation for transverse electric and mag-

netic wave. The amplitude of this mode reads[5—7]
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In the above expressions, k ≡ 2π/λ; σ(z) describes

how the “beam width” varies with the distance along

the axis of propagation. The beam has a minimum

width at z = 0 where σ(0) is denoted as σ0 and re-

ferred to as the “beam waist”. R(z) indicates the ra-

dius of curvature at the interaction point of the wave

front with the z axis. f is the confocal parameter,

and according to Eq. (2) it denotes the distance from

the beam waist in which the beam spot size increases

by
√

2 and is a convenient measure of the convergence

of the input beam.

In the light of Eq. (1), the beam parameters σ(z)

and R(z) completely specify the geometry of a Gaus-

sian beam, then it can be readily to calculate the

field at any point (x,y,z) in a radiation beam of wave

length λ and amplitude E0. Usually, it is more con-

venient to introduce a complex beam parameter
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with it, Eq. (1) is recasted as

E(x,y,z) =E0
•

σ0

σ(z)
e
−ik

[

x2+y2

2q(z)

]

e−i(kz−tan−1 z
f ) , (6)

and

1

R(z)
=R

[

1

q(z)

]

,
1

σ2(z)
=

π

λ
•=
[

1

q(z)

]

. (7)

It is found to be a useful substitution with q playing

for the Gaussian wave, a role similar to that of the

radius of curvature of a spherical wave. Sometimes q

is called the complex radius of curvature.

With the help of the complex parameter q, the

effect of the optical system on a laser beam can be

expressed through the well-known ABCD law[8] as

follows

q2 =
Aq1 +B

Cq1 +D
, (8)

where A, B, C, and D are components of transfer

matrix for the particular optical system considered1).

1)Here the parameters A, B, C, and D indicate the feature of the medium passed through by the laser beam and they can
be obtained by analyzing the character of the medium, as shown in Refs. [9, 10]. So far as Eq. (8) is concerned, it is actually the
analogue of the formula

R2 =
AR1 +B

CR1 +D
in classical optics, where R is the radius of curvature of the spherical wave. Formally speaking, the function of q for the laser beam
is just as that of R for the spherical wave.
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For example,
(
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C D

)

=

(

1 0

−1/F 1

)

is the transfer matrix for a laser beam passing through

a thin lens whose input and output planes coincide.

Another example is
(

A B

C D

)

=

(

1 L

0 1

)

,

which indicates the transfer matrix for a laser beam

traveling a distance L between two planes in a homo-

geneous medium.

2.2 Optics system design

For our energy measurement system, before the

laser enters the storage ring, the beam should be fo-

cused in order to realize the effective collision between

the laser and electron beams. As a simplified version,

the principle drawing of our optics system is displayed

in Fig. 3, assuming that the beam waist of the inci-

dent Gaussian beam is σ0 (which should be accom-

modated by laser equipment), the distance between

the waist and lens is l, with the focal length F for

lens. Here the location (l′) and magnitude (σ′

0) of the

waist of the output beam should be figured out.

Fig. 3. The transformation of a Gaussian beam
by the lens with the focal length F . σ0 and
σ′

0 denote the waists of laser beam before and
after passing through the len; l (l′) is the cor-
responding distance between σ0 (σ′

0) and the
lens.

Denote the parameter of the input Gaussian beam

at the waist as q1 = q(z1), and that of the output

Gaussian beam at the waist as q2 = q(z2), viz.

{

q1 = if ,

q2 = if ′ .
(9)

The transformation from the input waist position

to the output waist position include: free propaga-

tion with the distance l, pass-through lens with fo-

cal length F , and free propagation with the distance

l′. The corresponding transform matrixes denoted as

Ml, MF , Ml′ , and the synthetic transformation ma-

trix is
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By virtue of the ABCD law, it is obtained
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Equalizing the real and imaginary parts of the above

equation leads to

f ′ =
F 2f

(l−F )2 +f 2
, (12)

l′ =
l(l−F )+f 2

(l−F )2 +f 2
•F . (13)

Utilizing the relation given in Eq. (4), Eq. (12) can

be rewritten as

σ′

0 =
F

(l−F )2 +π2σ4
0/λ2

•σ0 . (14)

The immediate application of the above calcula-

tion is the design of optics system for laser trans-

formation. In the design, the f (equivalently σ0) is

determined by laser instrument, f ′ should satisfy the

intensity requirement for collision between the laser

and electron beams; and l′ should be long enough af-

ter taking into account the construction of vacuum

tube at north IP. So the problem becomes finding the

suitable values of l and F with the known quantities

f , f ′, and l′. Starting from Eq. (11) and expressing l

and F as the functions of f , f ′, and l′, we have

l2 =
f

f ′

•[(l′)2 +(f ′)2]−f 2 , (15)

F =
l′f−f ′l

f−f ′
. (16)

As a suggestive design, the beam waist is assumed

to be 2 m[11], the beam waist is required to be 1.5 mm

at IP; and the distance between the IP and the con-

verging lens is 6 m. With these input values and by

virtue of Eqs. (15) and (16), it is obtained F = 3.48 m

and l = 7.96 m. The corresponding design plot is

shown in Fig. 2.

2.3 Beam normalization

The last question we want to discuss in this sec-

tion is the normalization of laser beam. Rewriting
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Eq. (1) as follows

ψ(x,y,z) =C •exp

[

−x
2 +y2

σ2(z)

]

•exp[iθ(x,y,z)] . (17)

Here ψ(x,y,z) denotes the amplitude of the TEM00

mode Gaussian beam; the phase factor is simplified

as θ(x,y,z), which has no effect on the following dis-

cussion; C is the constant to be determined below.

With Eq. (17), we obtain the photon density of laser

beam

ργ = |ψ(x,y,z)|2 = ρ0 ·fγ(x,y,z), (18)

fγ(x,y,z) = exp

[

−2(x2 +y2)

σ2(z)

]

. (19)

To determine the constant ρ0 = C2 in Eq. (19), we

consider the differential relation between the laser

power (P ) and photon density:

dP =ωγ
•ργ

•∆S •c , (20)

where ωγ is the energy of laser beam, c the velocity

of light, and ∆S the intersection area passed through

by the laser beam. The integral of the above relation

gives:

P = ρ0
•(ωγ

•c •π •σ2(z)/2) ,

or

ρ0 =
2P

ωγ
•c •π •σ2(z)

. (21)

From dimensional analysis, we notice that ρ0 has di-

mension of inverse volume, so the photon density ργ

is actually the volume density distribution.

3 Electron beam and interaction

3.1 Electron beam

Analogously, for the electron (positive or nega-

tive) beam, the density function can be simplified as

follows[12, 13]

ρe = ρ′0 •fe(x,y,z), fe(x,y,z) = exp

[
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σ2
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,

(22)

where σx and σy are the standard deviations of elec-

tron beam in x and y directions, respectively; ρ′0 is

the normalization factor which is determined by the

differential relation between the current intensity (I)

and electron density:

dI = e •ρe
•∆S •ue , (23)

where e is the electron charge, ue the velocity of

electron beam, and ∆S the intersection area passed

through by the electron beam. The integral of the

above relation gives:

P = ρ′0 •(ue
•e •2π •σxσy) ,

or

ρ′0 =
I

ue
•e •2π •σxσy

. (24)

From dimensional analysis, we notice that ρ′0 has di-

mension of inverse volume, so the electron density ρe

is actually the volume density distribution.

3.2 Compton backscattering principle

The interaction of electron and laser beam is de-

picted by the Compton backscattering principle[14, 15].

The energy of the scattering photon (ω2) reads

ω2 =
ω1(1−β cosφ1)

1−β cosφ2 +
ω1

γm
(1−cos[φ1−φ2])

. (25)

With Eq. (25) we can calculated the various de-

pendence of ω2 on the injection laser beam (ω1), the

electron energy (Ee, notice β =
√

E2
e −m2

e/Ee and

γ = Ee/me), the observation angle (φ2) or the in-

jection angle (φ1). Fig. 4 shows the dependence of

the energy of backscattering photons on the elec-

tron energy and injection energy of the laser beam,

respectively. From Fig. 4(a), it can be seen for the

Fig. 4. Variation of the energy of backscatter-
ing photons with (a) electron energy and (b)
injection laser energy. (a) Fixed observation
angle φ2 = 0◦ and ω1 = 0.117 eV; (b) Fixed
observation angle φ2 =0◦ and Ee = 2 GeV.
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BEPCII designed energy region (1 to 2 GeV), the cor-

responding energy range for the head-on backscatter-

ing photon is around 2 to 7 MeV.

Next we consider cross section. When the un-

polarized light is scattered from the unpolarized elec-

trons and neither the spin of the residual electron nor

the polarization of the final photon are observed, the

differential cross section in terms of the relativistic

invariants is obtained as[15]

dσ

dt
= 2πr2e

1

(mx1)2

{

4y(1+y)− x1

x2

− x2
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}

, (26)

where re is the classical electron radius[16] and
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m
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ω2

m
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1
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1
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In a scattering experiment x1 is fixed by the energies

of the initial electron and photon. The total cross

section is obtained by integrating over x2 at the fixed

value of x1 (see e.g. Ref. [15])
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When observed in the laboratory, however, the

Lorentz transformation concentrates the photon flux

at small angle φ2 of the order of 1/γ, increasing there-

fore the photon flux at forward angles. By virtue of

Ref. [17], the differential cross section per unit solid

angle can be expressed as follows

dσ

dΩ
= 2r2e

(

ω2

mx1

)2{

4y(1+y)− x1

x2

− x2

x1

}

. (31)

The formulas of (30) and (31) will be used after-

ward to calculate the interaction cross section be-

tween the laser beam and the high energy electron

beam. Fig. 5 shows the energy-integrated differen-

tial cross sections dσ/dΩ for Compton scattering of

0.117 eV photons from relativistic electrons with en-

ergy Ee = 1776.99 MeV (the beam energy at τ-lepton

threshold[16]).

3.3 Interaction description

In the light of the descriptions of laser beam and

electron beam in Sections 2.3 and 3.1 respectively, we

calculate the intensity of backscattering photon. We

start from a simplified interaction picture: the laser

beam makes a “head-on” collision with the electron

beam, the intensity of backscattering photon can be

Fig. 5. Differential cross sections for Compton
scattering of 0.117 eV photons from relativis-
tic electrons at an incidence angle φ1 =180◦.

calculated by the formula:

Nγ =ueσT
•

∫∫∫
ργ

•ρe dxdydz , (32)

where ργ (ρe) denotes the volume density of injec-

tion laser (electron) beam described by Eq. (19) and

(21) (Eq. (22) and (24)); σT the total cross section

accepted or detected by HPGe detector, can be eval-

uated by Eq. (31) (or approximately by Eq. (30)).

More concretely, we could write the above equation

as follows:

Nγ =
PIσT

ωγ
•c •e •π2

∫∫∫
1

σ2(z)σxσy

fγ
•fe dxdydz . (33)

Using the parameters provided in Table 1 and by

virtue of Eq. (33), we get

Nγ = 2.7×108 s−1 .

Table 1. Some input parameters for the laser
and electron beams.

laser beam electron beam

power P=50 W I=9.8 mA

wave-length λ=10. 59 µm σx=1.6 mm

laser energy ωγ=0.117 eV σy=0.16 mm

waist radius r0=2 mm σz=15 mm

4 Detector system

4.1 HPGe detector

At BEPC/ the coaxial germanium detector (re-

ferred to as HPGe hereafter)[18] will be adopted,

which is basically a cylinder of germanium with an

n-type contact on the outer surface, and a p-type con-

tact on the surface of an axial well[19]. The effective

energy range of HPGe is from 50 keV to more than

10 MeV which is just satisfactory for the beam energy

measurement at BEPC/.
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Germanium detectors are semiconductor diodes

having a P-I-N structure in which the intrinsic re-

gion is sensitive to ionizing radiation, particularly

X-rays and γ-rays. There are three types of re-

action which happen in Germanium semiconductor,

that is photoeffect, Compton scattering and pair

production[20, 21] and the latter two processes dom-

inate when the energy of injection photon is greater

than 1 MeV. The germanium has a net impurity level

of around 1010 atoms/cm3 (an extremely small rela-

tive net impurity concentration compared to 4×1022

Ge atoms/cm3[20]) so that with moderate reverse bias

voltage, the intrinsic region that is the entire volume

between the electrodes is depleted, and an electric

field extends across this active region. When photons

interact with the material within the depleted volume

of a detector, charge carriers (holes and electrons) are

produced and are swept by the electric field to the P

and N electrodes. This charge, which is in propor-

tion to the energy deposited in the detector by the

incoming photon, is converted into a voltage pulse by

an integral charge sensitive preamplifier. Subsequent

amplification and pulse height analysis add the pulse

to accumulated histogram which eventually becomes

the characteristic spectrum of the source.

4.2 Simple simulation

Figure 6(a) shows a sketch of coaxial HPGe detec-

tor configuration. To understand the working feature,

Fig. 6. (a) Sketch of coaxial HPGe detector
configuration; (b) Sectional view of one-half
a detector, which has cylindrical symmetry
about the marked center line. Dimensions
given in Table 1 are identified by the same
letters in the figure.

we simulate the HPGe detection on injection photon

with energy E= 5 MeV. The parameters of HPGe[22]

used in simulation are listed in Table 2 (also refer to

Fig. 6(b)) and GEANT4 package [23] is used for the

simulation.

Table 2. Properties of HPGe detector in simulation.

dimension value nominal

crystal radius, R 35 mm

crystal length, L 80 mm

cap face to crystal distance, D 6 mm

hole radius, r 6 mm

hole depth, d 70 mm

thickness of internal (Li) dead layer, ti 1 mm

thickness of front dead layer, tf 0.3 mm

Fig. 7. Simulation of the received events by
HPGe detector. (b) is the close-up of the
spectrum of (a) around the edge at maximum
energy of the scattering photons. The solid
line indicates a fit through the spectrum, the
dashed line illustrates the assumed line shape
in the absence of the finite detector resolution
and energy spread, and the dotted line denotes
the background shape. (a) Simulation from 0
to 6 MeV; (b) Simulation from 5 to 5.7 MeV.

A small part of Compton spectrum of Fig. 7(a)

around ωmax
2 is shown in Fig. 7(b). The pure sharp

edge at ωmax
2 is approximated by the normalized

function[24]

h(x) = [p3 +p2(x−p0)]Θ(p0−x) , (34)

with p3 being the slope of the line before the edge.

The product p2(x− p0) is small compared to p3; for



No. 12 MO Xiao-Hu et alµWorking principles of the energy measurement system at BEPC/ 1001

p2 = 0 and p3 = 1, h(x) reduces to the normal step

function. The function h(x) is then folded with a

Gaussian of standard deviation p1

g(x) =
1√

2πp1

e
−

x2

2p2
1 . (35)

The resulting function for variable position and

height of the edge is given by

f(x) =

+∞∫

−∞

dth(t)g(x− t) . (36)

Anyway, due to the existence of background, a linear

function p4(x−p0)+p5 is added to f(x) to describe

the shape of background. Therefore the final syn-

thetic function has the form[18]:

g(x,p) =
1

2
(p2(x−p0)+p3) • erfc

[

x−p0√
2p1

]

+

p1p2√
2π

•exp

[

− (x−p0)
2

2p2
1

]

+p4(x−p0)+p5 ,

(37)

with[25]

erfc(z)≡ 2√
π

∞∫

z

du e−u2

.

The parameters in Eq. (37) are: p0 is edge position;

p1 is edge width; p2 is slope left; p3 is edge ampli-

tude; p4 is slope right; p5 is background. Parameter

p0 gives the information about the average electron

beam energy during the data acquisition period, while

p1 is mostly coupled with the electron beam energy

spread.

5 Discussion

In this monograph, recapitulated are the working

principles for three major subsystems of beam energy

measurement system at BEPC/, that is laser and op-

tics subsystem, interaction subsystem, and HPGe de-

tector subsystem. Targeting on our special case, two

normalization schemes for laser and electron beams

are presented and the principle design of optics sys-

tem is figured out based on the ABCD law. In addi-

tion, the simple simulation based on GEAN4 package

is performed and the preliminary results are obtained.

All of these results, which represent the main parts

and contain main features of a realistic system, are

the bases for both further detailed study and practical

engineering design.

Anyway, as we know there are a variety of actual

factors and effects which should be taken into account

in the work that follows. Some of them are listed as

follows and will be tackled in the following study:

1) Laser and optics system

Due to spatial constraint, optical equipments such

as focusing or reflecting lens, are needed to transfer

the laser beam into the storage ring. So the effects

of optics system on the beam strong and correspond-

ing uncertainty for backscattering photon should be

considered.

2) Electron and interaction system

The realistic electron beams have their own distri-

butions both for position and energy. Moreover, for

actual running, the electron beams have not only ver-

tical but also horizontal deviations. All these will def-

initely affect the distribution of backscattering pho-

ton.

3) HPGe Detector system

Here the magnitude, efficiency, acceptance of

HPGe conduct should be considered. Furthermore,

the accuracy of calibration γ source also needs ex-

perimental measurements.
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Appendix A

Kinematics of Compton Scattering

The interaction of electron and laser beam is depicted

by the Compton backscattering principle
[14, 15]

. The kine-

matics of Compton scattering is determined by the 4-

momentum conservation

p1 +k1 = p2 +k2 , (A1)

and for relativistic energies it is convenient to describe the

scattering process in terms of the relativistic invariants
[26]

s = (p1 +k1)
2 = (p2 +k2)

2
, (A2)

t = (p2−p1)
2 =(k1−k2)

2
, (A3)

u = (p1−k2)
2 = (p2−k1)

2
, (A4)

with

s+ t+u= 2m
2
. (A5)

In the laboratory these relativistic invariants are given

in terms of the angles in the scattering geometry as de-

picted in Fig. A1:

s = m
2 +2γmω1(1−β cosφ1) , (A6)

t = −2ω1ω2(1−β cosθ) , (A7)

u = m
2
−2γmω2(1−β cosφ2) , (A8)

Fig. A1. Geometry of a Compton scattering ex-
periment. The residual electron with momen-
tum p2 is not shown.

in which β and γm are the velocity and energy of the

initial electron, respectively1). Inserting (A6), (A7), and

(A8) into (A5) one obtains for the energy ω2 of the scat-

tering photon

ω2 =
ω1(1−β cosφ1)

1−β cosφ2 +
ω1

γm
(1−cosθ)

. (A9)

If rescattering photon (k2) is in the same plane deter-

mined by initial electron and laser beams (p1 and k2),

then θ =φ1−φ2 and Eq. (A9) becomes Eq. (25).

1) In high energy experiment, β and γ are often expressed as β = p1/E1 and γ =E1/me (me electron mass), respectively.


