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Abstract In this paper tree-level violation of weak isospin parameter, ρ in the frame of the littlest Higgs

model is studied. The potentially large deviation from the standard model prediction for the ρ in terms of the

littlest Higgs model parameters is calculated. The maximum value for ρ for f = 1 TeV, c = 0.05, c′ = 0.05

and υ′ = 1.5 GeV is ρ = 1.2973 which means a large enhancement than the SM.
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1 Introduction

Despite the success of the Standard Model

(SM)[1, 2], there still exist several problems such as

the hierarchy problem[3, 4] which motivate much of

the current research work about new physics beyond

the SM.

Among the extended models beyond the SM,

the little Higgs model offers a new solution to

the “hierarchy problem” in which the Higgs bo-

son is naturally light as a result of non-linearly

realized symmetry[5—12]. The first successful lit-

tle Higgs model was constructed by Arkani-Hamed,

Cohen and Georgi, which can cancel the rele-

vant quadratic divergences based on the pseudo-

Goldstone idea[5]. After that more models were con-

structed such as the minimal moose SU(3)2/SU(3)[6],

SU(6)/SP (6)[7], SU(5)/SO(5)[8] and the general

moose SU(3)n/SU(3)k[9].

The most economical model of them is the lit-

tlest Higgs (LH) model[10], which is based on an

SU(5)/SO(5) nonlinear sigma model[8]. It consists

of a SU(5) global symmetry, which is spontaneously

broken down to SO(5) by a vacuum condensate f .

In the LH model, a set of new heavy gauge bosons

(AH, ZH, WH) and a new heavy vector-like quark

(T) are introduced which just cancel the quadratic

divergence induced by the SM gauge boson loops and

the top quark loop, respectively[5—12]. Physicists ex-

pect that the LH model also can give reasonable ex-

planations to the problem as well as the MSSM[13].

It should be mentioned that precise measurement of

electroweak observables in the scale of the LH model

is effected by bounds which refer to the model typ-

icality. One of these bounds on electroweak correc-

tion comes from the custodial SU(2) symmetry viola-

tion and ρ parameter in the LH model which bounds

the scale of Λ[14—21] and also gives rise to the top

and bottom quark masses[22]. The possibility of us-

ing ρ as a handle on limiting the Higgs self-coupling

is suggested in Ref. [23] and the importance of cor-

rection to the weak isospin parameter is emphasized

in Refs. [22, 24—27]. In the little Higgs model both

of the SU(2)’s are gauged so the custodial symmetry

explicitly has been broken and ρ shifts to a large de-

viation from the SM prediction and ρ=1 is no longer

acceptable[28—30]. The aim of this paper is to derive

an expression for ρ in terms of the LH model param-

eters based on the corrections in LH model presented

in Refs. [14, 17, 28—31]. We will find that the devi-

ation of ρ parameter is more than what is illustrated

in Ref. [20].

In Section 2 we briefly introduce the littlest Higgs

model, in Section 3 we derive the ρ based on the

model parameters and in Section 4 the presented plots

show the numerical results.
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2 The related theory of the LH model

In the littlest Higgs model the vacuum expecta-

tion value (VEV) associated with the spontaneous

symmetry breaking at the scale Λs ∼ 4πf [17, 28].

The vacuum expectation value (VEV) breaks the

SU(5) global symmetry into its subgroup SO(5) and

breaks the local gauge symmetry [SU(2) ⊗ U(1)]2

into its diagonal subgroup SU(2)L ⊗ U(1)Y at the

same time, which is identified as the SM electroweak

gauge group. As we expect, the breaking of the gauge

symmetry [SU(2)⊗U(1)]2 into its diagonal subgroup

SU(2)L ⊗ U(1)Y gives rise to heavy gauge bosons

W′ and B′, and the remaining unbroken subgroup

SU(2)L⊗U(1)Y introduces the massless gauge bosons

W and B.

The spontaneous gauge symmetry breaking gives

rise to mass terms of order f for the gauge boson with

the field rotation to the mass eigenstates given by:

W = sW1 +sW2, W ′ = cW1−sW2,

B = s′B1 +c′B2, B′ =−c′B1 +s′B2,
(1)

where c and c′ are the mixing angles between two

SU(2)’s and U(1)’s in the LH model and are given

by:

c =
g1

√

g2
1 +g2

2

, c′ =
g′

1
√

g′2
1 +g′2

2

. (2)

The SM gauge coupling g and g′ can be expressed

as g = g1s = g2c and g′ = g′

1s
′ = g′

2c
′ respectively. At

scale f , the SM gauge fields remain massless, and the

heavy gauge bosons are massive:

mW′ =
f

2

√

g2
1 +g2

2 =
g

2sc
f ,

mB′ =
f

2
√

5

√

g′2
1 +g′2

2 =
g′

2
√

5s′c′
f .

(3)

For Higgs doublet and triplet fields, VEV’s are

parameterized as υ and υ′ respectively that υ =

2
mW

g
[17].

Since the triplet Higgs boson mass M 2
φ =

2m2
Hf 2

υ2

1
[

1−(4υ′f/υ2)2
] must be positive, we can find

a relation between υ and υ′ as
υ′

υ
<

υ

4f
[28].

The relevant expressions of the masses of new

gauge bosons and the couplings for our calculation

can be found in Ref. [28]. The masses of charged

gauge bosons WL and WZ are expressed in terms of

the LH model parameters as:

M 2

W±

L

= m2
W

[

1−
υ2

f 2

(

1

6
+

1

4
(c2−s2)2

)

+4
υ′2

υ2

]

,

M 2

W±

H

= m2
W

(

f 2

s2c2υ2
−1

)

,

(4)

and the neutral gauge bosons masses are expressed

as:

M 2
AL

= 0,

M 2
AH

= m2
Zs2

W

(

f 2

5s′2c′2υ2
−1+

xHc2
W

4s2c2s2
W

)

,

M 2
ZL

= m2
Z

[

1−
υ2

f 2

(

1

6
+

1

4
(c2−s2)2+

5

4
(c′2−s′2)2

)

+8
υ′2

υ2

]

,

M 2
ZH

= m2
W

(

f 2

s2c2υ2
−1−

xHs2
W

s′2c′2c2
W

)

,

(5)

in which;

xH =
5

2
gg′

scs′c′ (c2s′2 +s2c′2)

5g2s′2c′2−g′2s2c2
,

that mZ and mW are the masses of neutral and

charged gauge bosons predicted by the SM respec-

tively, and at the tree-level it keeps the relation

cW = cosθW = mW/mZ, where θW is the weak mixing

angle in the SM and s2
W = 1−c2

W.

3 ρ in terms of the LH model para-

meters

Precise measurement of electroweak observables

in the scope of the LH model requires modification

on ρ parameter as one of the bounds which comes

from the LH model typicality. In the SM custodial

symmetry is conserved and ρ =
m2

W

m2
Zc2

W

=1. In the LH

model both of the SU(2)’s are gauged therefore the

relation of ρ=1 is modified at the tree level under

shadow of extra input parameter, vacuum expecta-

tion value (VEV) of the Higgs triplet (υ′)[32, 33]. Now

we derive the ρ in the LH model which is defined by

ρ =
M 2

WL

M 2
ZL

c2
θ

[17, 29, 34] which M 2
WL

and M 2
ZL

are given

by Eq. (4) and Eq. (5) respectively and cθ is the ef-

fective leptonic mixing angle. The correction to the

weak isospin parameter is independent of the choice

of the gauge coupling[14, 28]. For gauge bosons the

coupling to fermions is in the form of iγµ(gV +gAγ5)

in which gV and gA are the vector and axial vec-

tor couplings respectively. Now we can find sθ from
gV

gA

= 4sθ−1[14, 15]. For the ZLee coupling, gV and gA

are given as below[28];

ge
V =

g

2cW

{

(−1/2+2s2
W)+

υ2

f 2

[

−cWxW′

Z

c

2s
+

sWxB′

Z

s′c′

(

2ye−
9

5
+

3

2
c′2

)]}

,

(6)
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ge
A=

g

2cW

{

1/2+
υ2

f 2

[

cWxW′

Z

c

2s
+

sWxB′

Z

s′c′

(

−
1

5
+

1

2
c′2

)]}

,

(7)

in which xB′

Z = −
5

2sW

s′c′(c′2 − s′2) and xW′

Z =

−
1

2cW

sc(c2−s2). Then we will arrive at:

4s2
θ−1 = (4s2

W−1)+
2υ2

f 2

[

s2
Wc2(c2−s2)−

c2
W(c′2−s′2)(−2+5c′2)

]

. (8)

Now we can extract c2
θ as fallows;

c2
θ = 1−s2

W−
υ2

2f 2

[

s2
Wc2 (c2−s2)−

c2
W (c′2−s′2) (−2+5c′2)

]

. (9)

On the other hand we need to give some correction

to the effective Fermi coupling Gf in the LH model.

So we use the effective Lagrangian of the charged cur-

rent interaction as below[14, 28];

Lc = gW a
LµJaµ

(

1+
c2(s2−c2)h2

f 2

)

+

g′BLµJµ
Y

(

1−
5c′2(s′2−c′2)h2

f 2

)

+

gW 3
LµJµ

Y

5(s′4−c′4)h2

f 2
−

g′BLµJ3µ c2(s2−c2)h2

f 2
−

Ja
µJaµ 2c4

f 2
−JY

µ JYµ 10c′4

f 2
. (10)

Then by integrating out the WL bosons, we will

get the expression below for the effective four-fermion

operator;

−
g2

2M 2
W

J+µJ−

µ

[

1+
c2(s2−c2)υ2

f 2

]

−

J+µJ−

µ

2c4

f 2
=−2

√
2GfJ

+µJ−

µ , (11)

where J± =
1

2
(J1±iJ2). After considering the W mass

correction, we finally obtain the corrected expression

of Gf in the LH model as[14, 34]:

1√
2Gf

= υ2

(

1+
υ2

4f 2
+4

υ′2

f 2

)

. (12)

By inverting Eq. (12) to obtain υ in terms of Gf ,

f and υ′ we will get;

υ2 =
1√
2Gf

(

1−
1

4
√

2Gff 2
−4

υ′2

f 2

)

. (13)

For more simplifying we assign A, B, C and D as

below:

A =
1

6
+

1

4
(c2−s2)

2
, (14)

B = s2
Wc2 (c2−s2)−c2

W (c′2−s′2)(−2+5c′2) , (15)

C =

√
2Gfυ

′2









1−
1

4
√

2Gff 2−4
υ′2

f 2









, (16)

D =
1√

2Gff 2

(

1−
1

4
√

2Gff 2
−4

υ′2

f 2

)

, (17)

So finally the expression for ρ in terms of model pa-

rameters, mixing angel cW and Gf using Eqs. (6), (11)

and (13) is:

ρ = c2
W×

1−CA+4D
(

1−DA−
5

4
D (c′2−s′2)2 +8C

)(

1−s2
W−

1

2
DB

) .

(18)

4 Numerical results

The fallowing input parameters has been used:

mZ = 91.1876 GeV and mW=80.425 GeV to de-

termine the mixing angle cW, and Gf=1.16637×
10−5 GeV−2. For evaluation of ρ in the framework of

LH model the following model parameters have been

used: the global symmetry breaking scale f in range

of 1 TeV< f <5 TeV[30], the Higgs triplet vacuum

expectation value υ′ (GeV), and the cosine mixing

angles for charged and neutral gauge boson c and c′.

Figure 1 shows the variation of ρ as the functions

of the global symmetry breaking scale f when the

other model parameters are fixed as c=0.5, c′=0.7

and υ′=15 GeV. As we see the ρ value decreases

very sharply by increasing f from 1 to 2.5 TeV. For

f >2.5 TeV the curve decreases slightly to reach the

minimum value ρ=1.01. So ρ is very sensitive to f .

Fig. 1. ρ as the functions of global symmetry

breaking scale f in case of c=0.5, c′=0.7 and

υ′=15 GeV.

Figure 2 shows the ρ under variation of c while

f=1 TeV, c′=0.7 and υ′=15 GeV, ρ has a minimum

value 1.214 when c=0.654 and for c more and less

than this value ρ has a very sharp increase to the

maximum value 1.23. So ρ is also very sensitive to c

parameter.
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Fig. 2. ρ as the functions of c while f=1 TeV,

c′=0.7 and υ′=15 GeV.

Figure 3 shows the variation of ρ as a function

of c′ when the other model parameters are fixed as

f=1 TeV, c=0.1 and υ′=15 GeV. As we can see ρ is

not too sensitive to c′ because the figure shows that

the difference between the maximum and minimum

value of ρ is just 0.03 and the curve is very smooth.

Fig. 3. ρ as a function of c′ when the other

model parameters are fixed as f=1 TeV, c=0.1

and υ′=15 GeV.

Figure 4 shows the variation of ρ as a function

of υ′ when the other model parameters are fixed as

f=1 TeV, c=0.1 and c′=0.1 and by increasing υ′ the

value of ρ will decrease. In this figure we realize that

ρ is sensitive to υ′ parameter but not as much as f

and c parameters as we noticed in Figs. 1 and 2.

Fig. 4. ρ as a function of υ′ when the other

model parameters are fixed as f=1 TeV, c=0.1

and c′=0.1.

5 Summary

The littlest Higgs model is a very interesting ex-

tension of the SM. It can be an alternative candidate

of new physics beyond the SM which solves the little

hierarchy problem. The LH model predicts a set of

new particles and modifies the SM-like gauge boson

couplings to other SM-like particles. The deviation of

ρ value from unit as a conclusion of symmetry break-

ing in the LH in this paper has been calculated and it

is realized that it is very sensitive to the global sym-

metry breaking scale f , c and υ′ and not very sensitive

to c′. The maximum value of ∆ρ(= ρ−1) for f=1 TeV,

c=0.05, c′=0.05 and υ′=1.5 GeV is 0.2973 which is a

large deviation from the SM prediction (ρ=1).
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