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Massive and massless neutrinos on unbalanced seesaws *
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Abstract The observation of neutrino oscillations requires new physics beyond the standard model (SM). A

SM-like gauge theory with p lepton families can be extended by introducing q heavy right-handed Majorana

neutrinos but preserving its SU(2)L×U(1)Y gauge symmetry. The overall neutrino mass matrix M turns out

to be a symmetric (p+q)×(p+q) matrix. Given p>q, the rank of M is in general equal to 2q, corresponding

to 2q non-zero mass eigenvalues. The existence of (p−q) massless left-handed Majorana neutrinos is an exact

consequence of the model, independent of the usual approximation made in deriving the Type-I seesaw relation

between the effective p×p light Majorana neutrino mass matrix M
ν

and the q× q heavy Majorana neutrino

mass matrix MR. In other words, the numbers of massive left- and right-handed neutrinos are fairly matched.

A good example to illustrate this “seesaw fair play rule” is the minimal seesaw model with p =3 and q =2, in

which one massless neutrino sits on the unbalanced seesaw.
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1 Introduction

Very robust evidence for non-zero neutrino masses

and large lepton flavor mixing has recently been

achieved from solar[1], atmospheric[2], reactor[3] and

accelerator[4] neutrino oscillation experiments. This

great breakthrough opens a new window to physics

beyond the standard model (SM). So far a number

of theoretical scenarios have been proposed, either at

low energy scales or at high energy scales, to under-

stand why the masses of neutrinos are considerably

smaller than those of charged leptons and quarks[5].

Among them, the seesaw mechanism[6] seems to be

most elegant and natural. In particular, an appropri-

ate combination of the seesaw mechanism and the lep-

togenesis mechanism[7] allows one to simultaneously

account for the observed neutrino oscillations and the

observed matter-antimatter asymmetry of the Uni-

verse.

The canonical (Type-I) seesaw idea is rather sim-

ple, indeed. By introducing three right-handed Majo-

rana neutrinos to the SM and keeping its Lagrangian

invariant under the SU(2)L×U(1)Y gauge transforma-

tion, one may write out a normal Dirac neutrino mass

term relevant to the electroweak symmetry breaking

(MD) and an extra Majorana neutrino mass term ir-

relevant to the electroweak symmetry breaking (MR).

Given MD as the seesaw fulcrum at or close to the

electroweak symmetry breaking scale (∼ 102 GeV),

the smallness of three left-handed neutrino masses

(< 1 eV) is then attributed to the largeness of three

right-handed neutrino masses (> 1013 GeV)[6]: M
ν
≈

−MDM−1
R MT

D . Since both MD and MR are in general

the rank-3 matrices, M
ν

is also of rank 3 and thus

has three non-vanishing mass eigenvalues.

Can massive and massless neutrinos coexist in a

general seesaw scenario? Such a question makes sense

for two simple reasons. On the one hand, current neu-

trino oscillation data do allow one of the light neu-

trinos to be massless or almost massless (e.g., either

m1 → 0 or m3 → 0[8]). On the other hand, it is con-

ceptually interesting to distinguish between the neu-

trino with an exact zero mass and the neutrino with

a vanishingly small mass. An affirmative answer to

the above question has been observed in Refs. [9, 10].

The purpose of this short note is to have a new look

at the properties of massive and massless neutrinos

in the generalized Type-I seesaw mechanism. We
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shall consider a straightforward extension of the SM

with p lepton families, q heavy right-handed Majo-

rana neutrinos and the SU(2)L ×U(1)Y gauge sym-

metry. The overall neutrino mass matrix M in this

model turns out to be a symmetric (p+q)×(p+q) ma-

trix. Given p > q, the rank of M is in general equal

to 2q, corresponding to 2q non-zero mass eigenval-

ues. We demonstrate that the existence of (p− q)

massless left-handed Majorana neutrinos is an exact

consequence of the model, independent of the usual

approximation made in deriving the Type-I seesaw re-

lation between the effective p×p light Majorana neu-

trino mass matrix M
ν

and the q×q heavy Majorana

neutrino mass matrix MR. We refer to this kind of

seesaw, in which the number of left-handed neutrinos

is larger than the number of right-handed neutrinos,

as the unbalanced seesaw. The fact that the numbers

of massive left- and right-handed Majorana neutrinos

are fairly matched on unbalanced seesaws can be re-

ferred to as the “seesaw fair play rule”. A well-known

example is the minimal seesaw model with p = 3 and

q = 2[8], in which one massless neutrino sits on the

unbalanced seesaw. The stability of mi = 0 against

radiative corrections from the seesaw scale down to

the electroweak scale will also be stressed.

2 Unbalanced seesaws

Let us consider a simple extension of the SM with

p lepton families and q heavy right-handed Majorana

neutrinos. The Lagrangian of this electroweak model

is required to be invariant under the SU(2)L×U(1)Y
gauge transformation. To be explicit, the lepton mass

terms can be written as

−L = lLYleRH+lLY
ν
NRHc+

1

2
N c

RMRNR+h.c. , (1)

where lL denotes the left-handed lepton doublets;

eR and NR stand respectively for the right-handed

charged-lepton and Majorana neutrino singlets; H is

the Higgs-boson weak isodoublet (with H c ≡ iσ2H
∗);

MR is the q× q heavy Majorana neutrino mass ma-

trix; Yl and Y
ν

are the coupling matrices of charged-

lepton and neutrino Yukawa interactions. After spon-

taneous gauge symmetry breaking, the neutral com-

ponent of H acquires the vacuum expectation value

v ≈ 174 GeV. Then we arrive at the p× p charged-

lepton mass matrix Ml = vYl and the p × q Dirac

neutrino mass matrix MD = vY
ν
. Eq. (1) turns out

to be

−L
′ = eLMleR +

1

2
(νLN c

R)

(

0 MD

MT
D MR

)(

νc
L

NR

)

+h.c. ,

(2)

where e, νL and NR represent the column vectors of

p charged-lepton fields, p left-handed neutrino fields

and q right-handed neutrino fields, respectively. In

obtaining Eq. (2), we have made use of the relation

νLMDNR = N c
RMT

Dνc
L as well as the properties of νL

(or NR) and νc
L (or N c

R)[11]. Note that the mass scale

of MR can naturally be much higher than the elec-

troweak scale v, because those right-handed Majo-

rana neutrinos are SU(2)L singlets and their corre-

sponding mass term is not subject to the magnitude

of v. The overall neutrino mass matrix

M =

(

0 MD

MT
D MR

)

(3)

is a symmetric (p + q)× (p + q) matrix and can be

diagonalized by the transformation

U †MU∗ =





















m1

. . .

mp

M1

. . .

Mq





















, (4)

where U is a unitary matrix, mi (for i = 1, · · · ,p)

denote the masses of p left-handed Majorana neutri-

nos, and Mj (for j = 1, · · · , q) denote the masses of q

right-handed Majorana neutrinos. If the mass scale

of MR is considerably higher than that of MD, one

may obtain the effective light neutrino mass matrix

M
ν
≈−MDM−1

R MT
D (5)

as an extremely good approximation[12]. In this

Type-I seesaw scenario, the mass eigenvalues of M
ν

and MR are mi (for i = 1, · · · ,p) and Mj (for j =

1, · · · , q), respectively, to a high degree of accuracy.

Of course, mi � v and Mj � v naturally hold. Our

concern is whether some of mi can in general be

vanishing.

We focus on the p > q case, since the p < q case is

less motivated from the viewpoint of maximum sim-

plicity and predictability in building a seesaw model

and interpreting the experimental data. Given p > q,

the rank of M
ν

is determined by that of MR through

the seesaw relation M
ν
≈−MDM−1

R MT
D . Namely, M

ν

must be of rank q in general1). Because the number

1) Here “in general” means that any contrived textures of MD, which might reduce the rank of M
ν

from q to a smaller integer,
are not taken into account. Without loss of generality, MR can always be taken to be diagonal and positive. In this basis, a
too special texture of MD is usually disfavored in order to simultaneously account for current neutrino oscillation data and the

cosmological baryon number asymmetry[5, 8].
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of non-zero eigenvalues of a symmetric matrix is equal

to the rank of this matrix[13], we can conclude that

M
ν

has (p−q) vanishing mass eigenvalues. Note that

this statement relies on the Type-I seesaw relation

which directly links MR to M
ν
. Taking account of

the approximation made in deriving this seesaw for-

mula (no matter how good it is), we have to clarify

whether the (p− q) mass eigenvalues of M
ν

are ex-

actly vanishing or only vanishingly small. A reliable

proof or disproof of the above statement should be

independent of the approximate seesaw relation.

So what we need to do is to calculate the rank of

M in Eq. (3). Taking

MD =







D11 · · · D1q

...
. . .

...

Dp1 · · · Dpq






,

MR =







R11 · · · R1q

...
. . .

...

Rq1 · · · Rqq






,

(6)

where Rij = Rji (for i, j = 1, · · · , q), we write out the

explicit expression of M :

M =

























0 · · · 0 D11 · · · D1q

...
. . .

...
...

. . .
...

0 · · · 0 Dp1 · · · Dpq

D11 · · · Dp1 R11 · · · R1q

...
. . .

...
...

. . .
...

D1q · · · Dpq Rq1 · · · Rqq

























. (7)

By definition, the rank of M is the number of non-

zero rows in the reduced row echelon form of M . The

latter can be calculated by using the method of Gauss

elimination. Because the upper-left p×p sub-matrix

is a zero matrix, it is easy to convert the upper-right

p×q sub-matrix (i.e., MD) into a reduced row echelon

form in which the first (p−q) rows are full of zero el-

ements. In contrast, the lower-right q×q sub-matrix

(i.e., MR) is of rank q. The rank of M turns out to be

p−(p−q)+q = 2q, corresponding to 2q non-zero mass

eigenvalues. In other words, q of the p light Majorana

neutrinos must be massive, and the remaining (p−q)

light Majorana neutrinos must be exactly massless.

If a seesaw scenario includes unequal numbers of

light (left-handed) and heavy (right-handed) Majo-

rana neutrinos, it can be referred to as an unbalanced

seesaw scenario. When the number of light neutrinos

is larger than that of heavy neutrinos, such an un-

balanced seesaw is actually balanced because all the

redundant light neutrinos are massless. That is, the

number of massive left-handed Majorana neutrinos is

fairly equal to the number of heavy right-handed Ma-

jorana neutrinos. We refer to this interesting observa-

tion, which is independent of the approximation made

in deriving the Type-I seesaw formula, as the “seesaw

fair play rule”. One can see later on that such a rule

is not only conceptually appealing but also applica-

ble to an instructive and phenomenologically-favored

model, the minimal seesaw model[8].

3 Further discussions

To be realistic, one has to fix p = 3 for the num-

ber of left-handed neutrinos. Then only q = 1 and

q = 2 are of interest for the discussion of unbal-

anced seesaw scenarios. The q = 1 case is not fa-

vored in the Type-I seesaw framework, because it

requires two left-handed Majorana neutrinos to be

massless and thus cannot accommodate two inde-

pendent neutrino mass-squared differences observed

in solar and atmospheric neutrino oscillations (i.e.,

∆m2
21 = m2

2−m2
1 ≈ 8×10−5 eV2 and ∆m2

32 = m2
3−m2

2 ≈

±2.5×10−3 eV2[14]). On the other hand, the q = 2 case

is compatible with current experimental data and has

been referred to as the minimal seesaw model[8] for

the study of both neutrino mixing and baryogenesis

via leptogenesis.

According to the “seesaw fair play rule”, there

must exist one massless neutrino in the minimal see-

saw model. One may also get at this point by cal-

culating the determinant of the 5× 5 neutrino mass

matrix M , in which the Dirac neutrino mass matrix

MD is 3×2 and the right-handed Majorana neutrino

mass matrix MR is 2× 2. It is very straightforward

to prove DetM = 0. Since |DetM | = m1m2m3M1M2

holds, one of mi (for i = 1,2,3) must be vanishing.

The solar neutrino oscillation experiment has fixed

m2 > m1
[14], and thus we are left with two distinct

possibilities:

1) m1 = 0, corresponding to a normal neutrino

mass hierarchy. Taking account of current experimen-

tal data, we can easily obtain m2 =
√

∆m2
21 ≈ 8.9×

10−3 eV and m3 =
√

∆m2
21 + |∆m2

32| ≈ 5.1×10−2 eV.

2) m3 = 0, corresponding to an inverted neutrino

mass hierarchy. Taking account of current experi-

mental data, we arrive at m1 =
√

|∆m2
32|−∆m2

21 ≈

4.9×10−2 eV and m2 =
√

|∆m2
32| ≈ 5.0×10−2 eV.

Note that it is possible to build viable neutrino

models[15] to accommodate both a special neutrino

mass spectrum with m1 = 0 or m3 = 0 and the

(nearly) tri-bimaximal neutrino mixing pattern [16].

Some of such models can even provide a natural inter-

pretation of the cosmological baryon number asym-

metry via (resonant) leptogenesis.
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It is worth mentioning that m1 = 0 (or m3 = 0) is

stable against radiative corrections from the seesaw

scale (usually measured by the lightest right-handed

Majorana neutrino mass M1) down to the electroweak

scale (usually characterized by the Z0 mass MZ or

simply the vacuum expectation value of the neutral

Higgs field v) in the minimal seesaw model, at least

at the one-loop level[17]. This observation is also ex-

pected to be true for a general unbalanced seesaw

scenario with p > q; namely, the zero masses of left-

handed Majorana neutrinos in such a scenario are in-

sensitive to radiative corrections between the scales

MZ and M1. Therefore, it makes sense to study

the phenomenology of unbalanced seesaw models in

which massive and massless neutrinos coexist.

4 Summary

To summarize, we have considered a SM-like

SU(2)L×U(1)Y gauge theory with p lepton families

and q heavy right-handed Majorana neutrinos. Given

p > q, we have shown that the overall (p+q)×(p+q)

neutrino mass matrix M is in general of rank 2q,

corresponding to 2q non-zero mass eigenvalues. An

important emphasis is that the existence of (p− q)

massless left-handed Majorana neutrinos is an exact

consequence of the model, independent of the usual

approximation made in deriving the Type-I seesaw

relation between the effective p× p light Majorana

neutrino mass matrix M
ν

and the q×q heavy Majo-

rana neutrino mass matrix MR. In other words, the

numbers of massive left- and right-handed neutrinos

are fairly matched in such an unbalanced seesaw sce-

nario. We have taken the minimal seesaw model (with

p = 3 and q = 2) as a simple but realistic example, in

which one massless left-handed neutrino coexists with

two massive left-handed neutrinos, to illustrate this

“seesaw fair play rule”.

Since the seesaw mechanism is a particularly nat-

ural, concise and appealing mechanism to under-

stand the smallness of left-handed Majorana neutrino

masses, its potential properties deserve further inves-

tigation. The main point of this note is that massless

and massive neutrinos can coexist in an unbalanced

seesaw scenario, if the number of heavy right-handed

Majorana neutrinos is smaller than that of light left-

handed Majorana neutrinos. Whether one of the light

neutrinos is really massless or not remains an open

question, but it is certainly a meaningful question

and should be answered experimentally in the future.

On the theoretical side, it is also of interest to explore

a complete seesaw picture for neutrino mass genera-

tion, lepton flavor mixing, CP violation and leptoge-

nesis with mismatched numbers of light and heavy

Majorana neutrinos.
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