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Classical mechanics in non-commutative phase space *
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Abstract In this paper the laws of motion of classical particles have been investigated in a non-commutative

phase space. The corresponding non-commutative relations contain not only spatial non-commutativity but

also momentum non-commutativity. First, new Poisson brackets have been defined in non-commutative phase

space. They contain corrections due to the non-commutativity of coordinates and momenta. On the basis of

this new Poisson brackets, a new modified second law of Newton has been obtained. For two cases, the free

particle and the harmonic oscillator, the equations of motion are derived on basis of the modified second law

of Newton and the linear transformation (Phys. Rev. D, 2005, 72: 025010). The consistency between both

methods is demonstrated. It is shown that a free particle in commutative space is not a free particle with

zero-acceleration in the non-commutative phase space, but it remains a free particle with zero-acceleration in

non-commutative space if only the coordinates are non-commutative.
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1 Introduction

In the past few years problems in non-commuta-

tive spaces have attracted much attention[1—4]. This

interest arose while studying the problem of open

strings attached to a D-brane in the presence of

a non-vanishing background B-field, inducing non-

commutativity in its end points[5—8], and studying

the Hall effect[9], showing non-commutativity in the

canonical coordinates and momenta. One way to deal

with the non-commutative space is to construct a new

kind of field theory by changing the standard product

of the fields by the star product (Weyl-Moyal):

(f ∗g)(x) = exp

(

i

2
θij ∂i ∂j

)

f(x)g(y)
∣

∣

x=y
. (1)

Here the constant parameters θij , which are real and

anti-symmetric matrix elements, represent the non-

commutativity of the space; f and g are infinitely

differentiable functions. In this theory some interest-

ing results have been found[10, 11]. Another approach

is, to postulate the commutation relations[14]:

[x̂i, x̂j ] = i~θij , [x̂i, p̂j ] = i~δij , [p̂i, p̂j ] = 0. (2)

In this case a non-commutative quantum mechan-

ics can be formulated from which some relevant re-

sults have already been obtained[12, 13]. Subsequently,

in another interesting research by Juan M. Romero

et al[14], it was assumed that the phase space has

a symplectic structure consistent with the commu-

tation rules of the non-commutative quantum me-

chanics. But Juan M. Romero et al. only de-

rived the corrections due to the non-commutativity

of the coordinates. As a result a modification of

Newtons second law has been obtained. In fact, al-

though in string theory only the coordinate space ex-

hibits a non-commutative structure, considering the

momentum being the partial derivatives of the ac-

tion with respect to the non-commutative spatial co-

ordinates, naturally, momentum space also exhibits

a non-commutative structure[15]. Although the ef-

fects of non-commutativity should presumably be-
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come significant at very high energy scales close,

for instance, to the string scale, it is expected that

there should be some relics of the effects of spa-

tial non-commutativity because of the incomplete de-

coupling mechanism between the high and low en-

ergy sectors[15, 16]. The quantum mechanics on non-

commutative spaces seems to be able to reveal such

low energy relics[15, 16] and has thus been investigated

intensively. Some significant results have been ob-

tained, for example, quantum Hall effect[9], quantum

gravity field[15] etc. It is well known that classical

Poisson brackets should go over to the commutation

relations of quantum mechanics via Eq. (4), namely,

interpreting classical mechanics as the classical ap-

proximation to quantum mechanics. So we believe

that the theoretical study of non-commutative classi-

cal algebraic relation is also significant, for instance,

in the non-commutative second law of Newton[14] etc.

In this paper we present new corrections to Newton’s

second law for the case when the coordinates and

momenta are all non-commutative. First, we rede-

fine Poisson brackets of Ref. [14] and give the corre-

sponding new corrections to Newton’s second law in

section 2. Second, on the basis of new modified sec-

ond law of Newton, we derive the equation of motion

for the free particle in Section 3. Finally, taking the

harmonic oscillator as an example, the equation of

motion obtained, based on the new modified second

law of Newton, is consistent with the one obtained

by linear transformations[15] in Section 4. Interest-

ingly, it is shown that a free particle in commutative

space isn’t a free particle with zero-acceleration in the

non-commutative phase space. But it is also free par-

ticle with zero-acceleration in non-commutative space

when only the coordinates are non-commutative. The

conclusion is given in Section 5.

2 Non-commutative classical mechan-

ics

In order to describe a non-commutative phase

space, the commutation relations in Eq. (2) should

be changed as follows[15]:

[x̂i, x̂j ] = i~θij ,

[p̂i, p̂j ] = i~ηij ,

[x̂i, p̂j ] = ~effδij i, j = 1,2,

~eff = ~(1+ξ) , ξ =
Tr[θη]

4~2
, (3)

where θij , ηij are real and anti-symmetric matrix el-

ements, representing the non-commutativity of coor-

dinates and momenta respectively.

In the classical limit the quantum mechanical

commutator is replaced by the Poisson bracket via

1

i~
[Â, B̂]→{Ã, B̃} . (4)

In the following discussion F̃ denotes the variables in

the non-commutative phase space in order to distin-

guish them from the variables F in the commutative

space. Noting that ξ is of second order on the non-

commutative parameters θ and η, (namely ξ � 1),

the classical limit of Eq. (3) reads

{x̃i, x̃j}= θij , {p̃i, p̃j}= ηij , {x̃i, p̃j}= δij . (5)

As mentioned in Refs. [17, 18], the Poisson brack-

ets must possess the same properties as the quantum

mechanical commutators; namely, they must be bi-

linear, anti-symmetric, satisfy the Leibniz rules and

the Jacobi identity. The general form of the Poisson

brackets for this deformed version of classical mechan-

ics can be redefined as (the correctness is proven in

section 4):

{A,B} =

(

∂A

∂xi

∂B

∂pj

−
∂A

∂pi

∂B

∂xj

)

{xi,pj}+

∂A

∂xi

∂B

∂xj

{xi,xj}+
∂A

∂pi

∂B

∂pj

{pi,pj} . (6)

Substituting Eq. (5) into Eq. (6), the redefined Pois-

son brackets can be written as follows:

{A,B} =

(

∂A

∂xi

∂B

∂pi

−
∂A

∂pi

∂B

∂xi

)

+

θij

∂A

∂xi

∂B

∂xj

+ηij

∂A

∂pi

∂B

∂pj

. (7)

Now let us consider a two-dimensional Hamiltonian

of the form

H =
1

2m
(p2

1 +p2
2)+V (x1,x2) . (8)

The equations of motion corresponding to this sym-

plectic structure are given by

ẋi = {xi,H}=
pi

m
+θij

∂V

∂xj

, (9)

ṗi = {pi,H}=−
∂V

∂xi

+ηij ẋj , (10)

which can be written as

mẍi =−
∂V

∂xi

+ηij ẋj +θijm
d

dt

(

∂V

∂xj

)

, i = 1,2. (11)

We interpret these equations as the new second law

of Newton. The second term of Eq. (11) is a cor-

rection due to the non-commutativity of momentum.

The third term is the correction due to the non-

commutativity of coordinates. These new terms de-

pend on the background, space through the factor of

“non- commutativity” θij and ηij , but also through

the variations in the potential. The external fields



340 Chinese Physics C (HEP & NP) Vol. 32

produce a perturbation in the space, inducing this

way these new forces. For ηij = 0, Eq. (11) goes over

into the results of Ref. [14], which therefore only dis-

cusses a special case of Eq. (11).

3 Equation of motion of a free particle

in non-commutative phase space

Taking a two-dimensional free particle as an ex-

ample, we have

V (x1,x2) = 0 . (12)

The substitution of Eq. (12) into Eq. (11) gives

mẍi = ηij ẋj . (13)

This is the new equation of motion for the free par-

ticle in non-commutative phase space. Surprisingly,

Eq. (13) shows that the acceleration of a free parti-

cle in non-commutative phase space is non-zero. The

term on the right hand of Eq. (13) is an analogue

to a damping force caused by non-commutativity of

the momentum components. We conclude that a free

particle in commutative space isn’t a free particle

with zero-acceleration in the non-commutative phase

space. The reason for this non-vanishing accelera-

tion is solely the non-commutativity of momentum

components. It remains, however, a free particle in

a non-commutative space where only the coordinates

are non-commutative.

4 Equation of motion of a harmonic

oscillator in non-commutative phase

space

The harmonic oscillator model plays an impor-

tant role not only in classical quantum mechanics,

but also in non-commutative quantum mechanics. It

has been subject to many investigations[19—23]. In or-

der to prove the correctness of the redefined Poisson

brackets and new corrections to Newton’s second law,

let us take the two-dimensional harmonic oscillator as

an example.

V (x1,x2) =
1

2
k

2
∑

i=1

x2
i . (14)

The substitution of Eq. (14) into Eq. (11) gives

mẍi =−kxi +ηij ẋj +θijmkẋj . (15)

This is the new second law of Newton for the har-

monic oscillator. The fist term on the right-hand

side of Eq. (15) is the elasticity, the second and third

terms are the analogues of the damping force due to

the non-commutativity of momenta and coordinates

respectively.

It is worth noting that the Eqs. (13) and (15)

both show correlations between different degrees of

freedom, i.e. the acceleration degree of freedom i is

correlated with the velocity degree of freedom j in

non-commutative phase space, and this correlation is

dependent on non-commutative parameters.

Finally, in order to prove the correctness of the re-

defined Poisson brackets and Newton’s modified sec-

ond law, we will solve the equation of motion of the

harmonic oscillator by linear transformations[15] in

the non-commutative phase space.

The Hamiltonian of a harmonic oscillator in non-

commutative phase space has the following form:

H =
1

2m
(p̃2

1 + p̃2
2)+V (x̃1, x̃2) . (16)

where the non-commutative phase space variables

{x̃1, p̃1, x̃2, p̃2} satisfy the commutation relations of

Eq. (5).

According to Ref. [15], one possible way of imple-

menting the algebra of Eq. (5) is to construct the non-

commutative variables {x̃1, p̃1, x̃2, p̃2} from the com-

mutative variables {x1,p1,x2,p2} by means of the fol-

lowing linear transformations:

x̃i = xi−
1

2
θijpj , p̃i = pi +

1

2
ηijxj . (17)

The substitution of Eq. (17) into (16) gives

H =
1

2m
(p2

1 +p2
2 +ηx2p1−ηx1p2)+

1

2
k(x2

1 +x2
2 +θx2p1−θx1p2) , (18)

where the commutative variables {x1,p1,x2,p2} sat-

isfy the usual commutation relations:

{xi,xj}= 0, {xi,pj}= δij , {pi,pj}= 0. (19)

The equations of motion of the harmonic oscillator

are given by

ẋ1 = {x1,H}=
p1

m
+

1

2m
ηx2 +

1

2
kθx2 , (20)

ṗ1 = {p1,H}=−kx1 +
1

2
ηẋ2 +

1

2
kθmẋ2 . (21)

This can be written as

mẍ1 =−kx1 +ηẋ2 +θkmẋ2 . (22)

and similar

mẍ2 =−kx2−ηẋ1−θkmẋ1 . (23)

Eq. (22) can also be obtained from Eq. (15) by tak-

ing i = 1 and Eq. (23) by taking i = 2. It is obvious

that the equation of motion obtained by the second

method is consistent with the one obtained by New-

ton’s modified second law Eq. (11). Thus we have

show that the so redefined Poisson brackets and new

corrections to Newton’s second law are correct in non-

commutative phase space.
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5 Conclusion

We have investigated the laws of motion of clas-

sical particles in a non-commutative phase space.

The corresponding non-commutative relations con-

tain not only the spatial non-commutativity but also

the momentum non-commutativity. First, new Pois-

son brackets (Eq. (7)) have been defined in the non-

commutative phase space and shown to contain cor-

rections due to the non-commutativity of coordinates

and momentum components. On the basis of this

new Poisson brackets a new modification of Newton’s

second law (Eq. (11)) has been derived. Based on

this the equations of motion (Eq. (13)) for a free

particle have been derived. Eq. (13) shows that the

acceleration of a free particle in commutative space

is non-zero in non-commutative phase space. The

term on the right hand side of Eq. (13) is an ana-

logue of a damping force, caused by the non- commu-

tativity of the momentum. In other words, a free

particle in commutative space is not a free parti-

cle with zero-acceleration in non-commutative phase

space. The reason for the non-vanishing acceleration

is the non-commutativity of momentum. It remains,

however, a free particle with zero-acceleration in non-

commutative space if only the coordinates are non-

commutative. In the second example, the harmonic

oscillator, also a damping force appears (Eq. (15)),

again caused by the non- commutativity of momenta

and coordinates, however also depending on the pres-

ence of the external field. Finally we applied the lin-

ear transformation method[15] to solve the equation of

motion for the harmonic oscillator. Both methods led

to the same equations of motion, proving the correct-

ness of the modified second law of Newton, obtained

from the modified Poisson brackets.
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