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A new gravitational model for dark energy *
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Abstract A new gravitational model for dark energy is presented based on the model of de Sitter gauge theory

of gravity. In the model, in addition to the cosmological constant, the homogeneous and isotropic torsion and

its coupling with curvature play an important role for dark energy. The model may supply the universe with

a natural transit from decelerating expansion to accelerating expansion.
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1 Introduction

The observations on SN Ia[1] show that our uni-

verse is expanding acceleratingly. In order to explain

the accelerating expansion, many dark energy mod-

els have been constructed. For example, some strange

fields in some models are introduced to effectively de-

scribe the behaviors of the dark energy. An arbitrary

function of curvature scalar R in gravitational La-

grangian is also used to explain the dark energy. All

theses models are phenomenological ones.

The purpose of this paper is to present a new grav-

itational model for the dark energy other than the

cosmological constant based on the model of de Sit-

ter gauge theory of gravity[2—4], whose formulation

is inspired by the dS invariant special relativity[5—7]

and the principle of localization[3]. The model of the

theory of gravity is constructed from the first princi-

ple.

We shall first review the model of dS gauge the-

ory of gravity very briefly, and then present the new

gravitational model for dark energy. Finally, we shall

give some concluding remarks.

2 A model of de Sitter gauge theory

of gravity

Like the Poincaré gauge theory of gravity[8, 9] in

which the full Poincaré symmetry of a Minkowski

spacetime is localized, the model of dS gauge theory

of gravity can be stimulated by that gravity should

be based on the idea of the localization of the full

dS-symmetry of a dS spacetime and its dynamics is

supposed to be governed by a gauge-like one with a

dimensionless coupling constant g. At present, the

theory is constructed in a special gauge called the

dS-Lorentz gauge. In the special gauge, the dS con-

nection reads[2—4, 10—14]

(B̌AB
µ ) =





Bab
µ R−1ea

µ

−R−1eb
µ 0



∈ so(1,4), (1)

where B̌AB
µ = ηBCB̌A

Cµ with (ηBC) = diag(1,−1,−1,

−1,−1) and µ, ν, a, b = 0, · · · ,3, Bab
µ is the Lorentz

connection, ea
µ is the orthogonal tetrad, and R is

the invariant parameter for the local de Sitter space,

which is related to cosmological constant by Λ =

3/R2. The curvature of the connection is

F̌µν = (F̌AB
µν ) =





F ab
µν +R−2eab

µν R−1T a
µν

−R−1T b
µν 0





∈ so(1,4), (2)

where ea
bµν = ea

µebν − ea
νebµ, eaµ = ηabe

b
µ, F ab

µν and T a
µν

are the curvature and torsion of the Lorentz connec-
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tion, respectively.

The model of dS gauge theory of gravity we con-

sider here has the action

ST = SGYM +SM , (3)

where SM is the action of the source with minimum

coupling to the gravitational fields and SGYM is the

gauge-like action in Lorentz gauge of the model[2—4]:

SGYM =
~

4g2

∫
M

d4xeTrdS(F̌µνF̌
µν) =

−

∫
M

d4xe

[

~

4g2
F ab

µνF µν
ab −

χ(F −2Λ)−
χ

2
T a

µνT µν
a

]

. (4)

Here, e = det(ea
µ), a dimensionless constant g should

be introduced as usual in the gauge theory to de-

scribe the self-interaction of the gauge field, χ a di-

mensional coupling constant related to g and R, and

F =−
1

2
F ab

µνeµν
ab the scalar curvature of the Cartan con-

nection, the same as the action in the Einstein-Cartan

theory. In order to make sense in comparison with the

Einstein-Cartan theory, we should take R = (3/Λ)1/2,

χ = 1/(16πG) and ~g−2 = 3χΛ−1.

The field equations can be given via the varia-

tional principle with respect to ea
µ,Bab

µ ,

T µν
a ||ν −F µ

a +
1

2
Feµ

a −Λeµ
a = 8πG(T µ

Ma +T µ
Ga), (5)

F µν
ab ||ν = R−2(16πGSµ

Mab +Sµ
Gab). (6)

In Eqs. (5) and (6), || represents the covariant deriva-

tive compatible with Christoffel symbol {µ
νκ} and spin

connection Ba
bµ. Besides, F µ

a = −F µν
ab eb

ν , F = F µ
a ea

µ.

T µ
Ma, Sµ

Gab,

T µ
Ga = ~g−2T µ

Fa +2χT µ
Ta, (7)

Sµ
Gab = Sµ

Fab +2Sµ
Tab , (8)

are the tetrad form of the stress-energy tensors and

spin current for matter and gravity, respectively,

where

T µ
Fa := eκ

aTr(F µλFκλ)−
1

4
eµ

aTr(F λσFλσ), (9)

T µ
Ta := eκ

aT µλ
b T b

κλ−
1

4
eµ

aT λσ
b T b

λσ, (10)

are the tetrad form of the stress-energy tensors for

curvature and torsion, and

Sµ
Fab := −eµν

ab ||ν = Y µ
λνe

λν
ab +Y ν

λνe
µλ
ab , (11)

Sµ
Tab := T µλ

[a eb]λ, (12)

are the spin currents for curvature F and torsion T ,

respectively. Here,

Y λ
µν =

1

2
(T λ

νµ +T λ
µν +T λ

νµ). (13)

is the contortion.

3 Contribution of torsion to dark en-

ergy

To deal with the cosmological solutions, we sup-

pose, as usual, that the universe is homogeneous

and isotropic and that the matter in the universe is

filled with the perfect fluid and dominated by dust.

Thus, the spacetime is described by the Friedmann-

Robertson-Walker (FRW) metirc

ds2 = dt2−a2(t)

[

dr2

1−kr2
+r2(dθ2 +sin2 θdφ2)

]

, (14)

and the stress-energy tensor of the matter is given by

T µν = ρUµUν , (15)

where a(t) is the scale factor, k = 0, ±1, Uµ is 4-

velocity of comoving observers and ρ is the energy

density.

Now, we consider the cosmological solutions with

torsion for the above equations. In order for the ho-

mogeneity and isotropy to be preserved, we consider

the homogeneous and isotropic torsion in the model

of dS gauge theory of gravity,







T
0 = 0

T
i = T+ b

0∧b
i,

(16)

where b
0 and b

i are the frame 1-form, T+ is a func-

tion of time t, which is invariant under reflection. The

spin currents of matter fields in the universe are sup-

posed to be zero. Then, the Einstein-like equations

and Yang-like equations reduce to

−
ä2

a2 −

(

Ṫ+ +2
ȧ

a
T+−2

ä

a

)

Ṫ++T 4
+−4

ȧ

a
T 3

+ +

(

5
ȧ2

a2 +

2
k

a2 −
3

R2

)

T 2
+ +2

ȧ

a

(

ä

a
−2

ȧ2

a2 −2
k

a2 +
3

R2

)

T+ +

ȧ2

a2

(

ȧ2

a2 +2
k

a2 −
2

R2

)

+
k2

a4 −
2

R2

k

a2 +
2

R4 =

−
16πG

3R2 ρ, (17)
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ä2

a2 +

(

Ṫ+ +2
ȧ

a
T+−2

ä

a
+

6

R2

)

Ṫ+−T 4
+ +4

ȧ

a
T 3

+−

(

5
ȧ2

a2 +2
k

a2 +
3

R2

)

T 2
+−2

ȧ

a

(

ä

a
−2

ȧ2

a2 −2
k

a2 −

6

R2

)

T+−
4

R2

ä

a
−

ȧ2

a2

(

ȧ2

a2 +2
k

a2 +
2

R2

)

−
k2

a4 −

2

R2

k

a2 +
6

R4 = 0, (18)

T̈+ +3
ȧ

a
Ṫ+−

(

2T 2
+−6

ȧ

a
T+−

ä

a
+5

ȧ2

a2 +2
k

a2 −

3

R2

)

T+−

...
a

a
−

ȧä

a2 +2
ȧ3

a3 +2
ȧ

a

k

a2 = 0. (19)

The three equations can determine the three variables

T+, a, and ρ. Eqs. (17) and (18) give rise to

ä

a
= −H2−

k

a2
+

4

3
πGρ+

2

R2 +

3

2
(Ṫ++3HT+−T+

2), (20)

where H = ȧ/a is the Hubble parameter. With the

help of Eqs. (20), (19) and (17) can be rewritten as

T̈+ = −3(H +
3

2
T+)Ṫ+ +

[

13

2
(T+−3H)T++6H2−

8

R2
+

3k

a2
−

28

3
πGρ

]

T+−
8

3
πGρ̇, (21)

[

4

3
πGρ

]2

+
4

3
πGρ

[

Ṫ++7HT+−3T 2
+−

2

(

H2 +
k

a2
−

2

R2

)]

−
16

3R2
πGρ+

(

2

R2
−H2−

k

a2

)

Ṫ++

(

8

R2
−3H2−

3k

a2

)

HT++

(

37

4
H2 +

k

a2
−

3

R2

)

T 2
++

7

2
HT+Ṫ+−

3

2
T 2

+Ṫ+−
13

2
HT 3

++
1

4
Ṫ 2

++
5

4
T 4

+−

2

R2

(

H2 +
k

a2
−

1

R2

)

= 0 . (22)

In principle, one can solve Eqs. (20)—(22) to obtain

the cosmological solution for a(t), ρ(t), and T+(t). In

the following, we shall find some numerical solutions

for some reasonable initial parameters.

For the convenience to compare our model with

the ΛCDM model in GR, we rewrite Eq. (17) as

1 = Ωm +ΩΛ +Ωk +ΩDr
+ΩD1

, (23)

where

Ωm =
8πGρ

3H2 , ΩΛ =
Λ

3H2 , Ωk =
−k

a2H2
,

ΩDr
=

Dr

H2
, ΩD1

=
D1

H2 , (24)

with

Dr :=
1

2
R2T t

Ft +T t
Tt =

3

2
[R2(B2−A2)+T+

2], (25)

D1 := −
1

3
T tν

t ||ν +2HT+−T+
2 = 3HT+−2T+

2, (26)

where

A = Ṫ++HT+−
ä

a
, B = 2HT+−T+

2−H2−
k

a2
. (27)

Dr/(8πG) is the energy density of dark radiation con-

tributed from both curvature and torsion, D1/(8πG)

is the dark energy of the first part from the torsion.

They are new contributions in comparison with the

ΛCDM model in GR, in which 1 = Ωm+ΩΛ+Ωk, and

play the role of the dynamical dark energy.

By virtue of Eq. (23), Eq. (20) can be rewritten

as

q =
1

2
Ωm−ΩΛ +ΩDr

+
1

2
(ΩD1

−ΩD2
), (28)

where ΩD2
= D2/H2 and

D2 = −T rν
r ||ν +4HT++2Ṫ+−T+

2 =

3Ṫ++6HT+−T+
2 . (29)

D2/(8πG) is the dark energy of the second part from

the torsion.

The dark radiation ΩDr
and dark energy ΩD1

and

ΩD2
as well as ΩΛ are unobservable directly at present

time. However, the present values of ΩD1
+ΩDr

and

ΩD2
−ΩDr

can be determined from Eq. (23) and (28)

if the present values of q, Ωm, ΩΛ and Ωk are known.

This gives a chance to estimate ‘the density of torsion’

in the universe.

The behavior of the scale factor can be obtained

by numerically integrating the above equations back-

ward from today. The initial conditions for numeri-

cal calculation may be chosen based on the following

facts. The kinematical analysis on the data of the SN

Ia observations shows that the present deceleration

parameter should be about q0 ≈−0.7 — −0.81[15—17].

(A subscript 0 denotes the present value as usual.)

The density of matter (including baryonic and dark

matter) on the scale of galaxy clusters is estimated

between Ωm0 ≈ 0.2—0.3[18], which is consistent with

the cosmological estimate from the observation data

of WMAP[19], SDSS[20], etc. in the framework of gen-

eral relativity.

Figure 1 shows the evolution of scale factor for

q0 =−0.81 as argued in[17] and Ωm0 = 0.24. When q0

and Ωm0 are fixed, there are still two degrees of free-
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dom among Ωk0, ΩΛ0, ΩDr0+ΩD10 and ΩD20−ΩDr0.

Since the model of gravity is stimulated from dS in-

variant special relativity and since the spatial curva-

ture is argued to be positive in the dS invariant spe-

cial relativity, we consider here the case Ωk0 =−0.02

as an example, which is also consistent with the astro-

nomical observation[19, 20] as long as the cosmological

constant is small enough. Now, only one degree of

freedom remains. We choose ΩΛ0 as independent one

and plot curves for different values of ΩΛ0. In the

figure, the horizontal axis is time in the unit of H−1
0

and the vertical axis is a/a0. From the figure, we

can find that the larger the cosmological constant,

the younger the universe is. Obviously, some mod-

els have been ruled out because they cannot explain

the ages of the oldest globular clusters[21], which are

between 10 and 13 Gyr. But, there are still wide pa-

rameter ranges (roughly speaking, 0 < ΩΛ0 < 0.35)

for the models which might be used to explain the

evolution of the universe. It is remarkable that the

models supply a natural transit from the decelerat-

ing expansion to accelerating expansion without the

help of the strange fields such as quintessence, K-

essence, phantom, quintom, etc. For example, the

model with ΩΛ0 = 0.345 behaves as a→ 0 as t→ 0. In

this case, ΩD10 +ΩDr0 = 0.435, ΩD20 −ΩDr0 = 1.605,
1

2
(ΩD10−ΩD20)+ΩDr0 =−0.585 due to Eq. (23) and

(28). It means that on the large scale, the effect of

torsion cannot be ignored. The ratio of the energy

density of torsion to the critical energy density is even

greater than those for cosmological constant and mat-

ter.

Fig. 1. Plots of the evolution of scale factor

subject to different parameters. The horizon-

tal axis is time in the unit of H
−1
0 , while the

vertical axis is the ratio of the scale factor to

its present value.

Figure 2 plots the behavior of deceleration param-

eter versus red shift z. We can see that the transit

from the decelerating expansion to the accelerating

expansion happens around at z = 0.9, which is qual-

itatively consistent with the analysis on the SN Ia

observation[15].

Fig. 2. Plot of the deceleration parameter ver-

sus red shift z. The transit from the deceler-

ating expansion to the accelerating expansion

occurs at z < 1 for this model.

4 Concluding Remarks

The astronomical observations show that the uni-

verse is probably asymptotic dS. It suggests that

there is a need to analyze the observation data based

on a theory with local dS symmetry.

We have shown that the torsion and its coupling

with curvature may serve as the dark energy in ad-

dition to the cosmological constant, which makes the

universe transit from decelerating expansion to ac-

celerating expansion. The transit may occur around

at z = 0.9, which is qualitatively consistent with the

analysis on the SN Ia observation. The reason that

the redshift of the transit is systematically greater

than the previous analysis is that the relation be-

tween q and z is obviously not a linear one in our

model, while the previous analysis is based on the as-

sumption q = q0+q1z
[15]. If we make the linear fitting

for the q−z curve and then parallel transport the line

so that it goes through q0 at z = 0, then we shall get a

smaller redshift for the transit. When 0 < ΩΛ < 0.345

the spin-current-free cosmological solutions with tor-

sion are reasonable.

In our cosmological models, the effects of torsion

could not be ignored on the large scale, which is even

greater than that of the matter density or cosmo-

logical constant. Even though, it is very difficult to

directly measure the energy density of torsion by lo-

cal experiments because its order of magnitude is the

same as that of the cosmological constant.

Needless to say, to check whether the model can

really explain the gravitational phenomena in the

universe, much work is needed.
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