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Abstract It is unavoidable to deal with the quark and gluon momentum and angular momentum contributions

to the nucleon momentum and spin in the study of nucleon internal structure. However we never have the

quark and gluon momentum, orbital angular momentum and gluon spin operators which satisfy both the gauge

invariance and the canonical momentum and angular momentum commutation relation. The conflicts between

the gauge invariance and canonical quantization requirement of these operators are discussed. A new set of

quark and gluon momentum, orbital angular momentum and spin operators, which satisfy both the gauge

invariance and canonical momentum and angular momentum commutation relation, are proposed. The key

point to achieve such a proper decomposition is to separate the gauge field into the pure gauge and the gauge

covariant parts. The same conflicts also exist in QED and quantum mechanics and have been solved in the

same manner. The impacts of this new decomposition to the nucleon internal structure are discussed.
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1 Introduction

In quantum physics, any observable is expressed

as a Hermitian operator in Hilbert space. The fun-

damental operators, such as momentum, orbital an-

gular momentum, spin, satisfy the canonical momen-

tum and angular momentum commutation relation.

These commutation relations or Lie algebras define

the properties of these operators.

Gauge invariance has been recognized as the first

principle through the development of the standard

model. In classical gauge field theory, gauge invari-

ance principle requires any observable must be ex-

pressed in terms of gauge invariant variable. In quan-

tum gauge field theory, in general one only requires

the matrix elements of an operator in between physi-

cal states to be gauge invariant. However one usually

requires the operators themselves to be gauge invari-

ant. This is called the strong gauge invariance in[1].

We will restrict our discussion in strong gauge invari-

ance in this paper and leave the other possibility to

the future study[1, 2]

In the study of nucleon (atom) internal structure,

it is unavoidable to study the quark, gluon (elec-

tron, photon) momentum, orbital angular momen-

tum and spin contributions to the nucleon (atom)

momentum and spin. However we never have the

quark, gluon (electron, photon) momentum, orbital

angular momentum and spin operators which sat-

isfy both the gauge invariance and canonical momen-
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tum and angular momentum commutation relation

except the quark (electron) spin. Even it has been

claimed in some textbooks that one can not define

separately the photon spin and orbital angular mo-

mentum operators[3] and almost a proper gluon spin

operator search has been given up in the nucleon spin

structure study for the last ten years. This situa-

tion has left puzzles in quantum mechanics, quan-

tum electrodynamics (QED) and quantum chromo-

dynamics (QCD), for example, the expectation value

of the Hamiltonian of hydrogen atom is gauge depen-

dent under a time dependent gauge transformation[4],

the meaning of the multipole radiation analysis from

atom to hadron spectroscopy would be obscure if the

photon spin and orbital angular momentum operators

were not well defined especially the parity of these

microscopic states determined from the multipole ra-

diation analysis would be obscure, there will be no

way to compare the measured gluon spin contribu-

tion to nucleon spin with the theoretical calculated

one if one has not a proper gluon spin operator, etc.

In section 2 the conflict between gauge invari-

ance and canonical quantization of the usual quark

gluon (electron photon) momentum, orbital angular

momentum and spin operators are discussed from the

simple quantum mechanics of a charged particle mov-

ing in an electromagnetic field to those of quark and

gluon in QCD. In the third section a new set of mo-

mentum, orbital angular momentum and spin oper-

ators, which satisfy both the gauge invariance and

canonical momentum and angular momentum com-

mutation relation, are given. The key point is to

separate the gauge field into pure gauge and gauge

covariant (invariant) parts. The possible impacts of

these modification to the nucleon internal structure

will be discussed in section 4. the last section is a

summary and a prospect of further studies.

2 Conflict between gauge invariance

and canonical quantization of the

momentum and angular momentum

operators of the fermion and gauge

field parts

The conflict between gauge invariance and canon-

ical quantization of the momentum and orbital angu-

lar momentum operators of a charged particle mov-

ing in the electromagnetic field, a U(1) Abelian gauge

field, has existed in quantum mechanics since the es-

tablishment of gauge invariance principle. Starting

from the Lagrangian of a non-relativistic charged par-

ticle with mass m, velocity ~v and charge e moving in

an electromagnetic field Aµ = (A0, ~A),

L(m,~v,e,Aµ) =
1

2m
(m~v)2−e(A0−~v · ~A), (1)

one obtains the canonical momentum,

~p=m~v+e ~A, (2)

the orbital angular momentum,

~L=~r×~p, (3)

and the Hamiltonian,

H =
1

2m
(~p−e ~A)2 +eA0. (4)

All of these three classical dynamical variables are

gauge dependent and so not observables. In the co-

ordinate representation, the momentum operator ~p is

quantized as

~p=
~∇

i
. (5)

no matter what kind gauge is fixed on even though

the classical canonical momentum operator, Eq. (2),

is gauge dependent. The orbital angular momentum

and Hamiltonian operators are quantized by replacing

the ~p by
~∇

i
. These quantized momentum and angular

momentum operators satisfy the canonical commuta-

tion relation or the Lie algebra:

[pl,pm] = 0,

[Ll,Lm] = iεlmnLn,

[pl,Lm] = iεlmnpn,

l,m,n = 1,2,3, (6)

where εl,m,n is the rank three totally antisymmetric

tensor and ε1,2,3 = 1. In general, the [pl,H ] 6= 0 which

is different from the Poincaré algebra of the total mo-

mentum Pl,(l= 1,2,3) and total H of the whole sys-

tem where [Pl,H ] = 0.

However, after a gauge transformation,

ψ′ = e−ieω(x)ψ, (7)

the matrix elements of the above operators transform

as follows,

〈ψ′|~p|ψ′〉 = 〈ψ|~p|ψ〉−e〈ψ|~∇ω(x)|ψ〉,

〈ψ′|~L|ψ′〉 = 〈ψ|~L|ψ〉−e〈ψ|~r× ~∇ω(x)|ψ〉,

〈ψ′|H ′|ψ′〉 = 〈ψ|H |ψ〉+e〈ψ|∂tω(x)|ψ〉. (8)

It is obvious that the matrix elements of these three

operators are all gauge dependent. Therefore they

are not measurable and so these operators do not

correspond to observables. This problem has left in

quantum mechanics since the gauge principle was pro-

posed.
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The relativistic version of the quantum mechanics

has the same problem. The gauge dependence of the

expectation value of the Hamiltonian of the charged

particle moving in electromagnetic field under a time

dependent gauge transformation had been discussed

by T. Goldman[4].

This conflict had been carried over to QED. Start-

ing from a QED Lagrangian,

L = ψ̄[γµ(∂µ− ieAµ)+im]ψ−
1

4
FµνF

µν ,

Fµν = ∂µAν −∂νAµ. (9)

By means of the Noether theorem one obtains the

momentum and angular momentum operators as fol-

lows:

~P =

∫
d3xψ†

~∇

i
ψ+

∫
d3xEi~∇Ai =Pe +Pph, (10)

~J = ~Se + ~Le + ~Sph+ ~Lph =∫
d3xψ†

~Σ

2
ψ+

∫
d3x~x×ψ†

~∇

i
ψ+

∫
d3x~E× ~A+

∫
d3x~x×Ei~∇Ai. (11)

Here the Σj =
i

2
εjklγ

kγl. These electron and photon

momentums, orbital angular momentums and spin,

after quantization, satisfy momentum and angular

momentum Lie algebra, however they are not gauge

invariant except the electron spin.

The multipole radiation analysis is the basis of

atomic, molecular, nuclear and hadron spectroscopy.

The multipole field is based on the decomposition of

the electromagnetic field into field with definite or-

bital angular momentum and spin quantum numbers.

If the photon spin and orbital angular momentum

operators were gauge dependent, then the physical

meaning of the multipole field would be obscure es-

pecially the parity of these microscopic states deter-

mined by the measurement of the orbital angular mo-

mentum quantum number of the multipole radiation

field would be obscure.

QCD has the same problem as QED. The quark

gluon momentum, orbital angular momentum and

spin operators derived from QCD Lagrangian by

Noether theorem have the same form as those of elec-

tron and photon if one omits the color indices. They

satisfy the momentum and angular momentum Lie

algebra but they are not gauge invariant except the

quark spin.

Because of the lack of gauge invariant quark,

gluon momentum operators, the present operator

product expansion (OPE) used the following two op-

erators as quark gluon momentum operators,

~P = ~Pq + ~Pg =∫
d3xψ†

~D

i
ψ+

∫
d3x~E× ~B,

~D = ~∇− ig ~A. (12)

Both the quark and gluon “momentum” operators
~Pq and ~Pg defined in Eq. (12) are gauge invariant

but neither the quark “momentum” ~Pq nor the gluon

“momentum” ~Pg satisfies the momentum algebra, for

example,

[Dl,Dm] =−ig(∂lAm−∂mAl)−ig2CabcA
a
l A

b
mT

c, (13)

where Cabc is the SU(3) group structure constant.

The ~Pg does not satisfy the momentum algebra ei-

ther in the interacting quark-gluon field, i.e. QCD

case. Therefore neither the ~Pq nor the ~Pg used in the

OPE is the real momentum operator.

The gluon spin contribution is under intensive

study, PHENIX, STAR, COMPASS, HERMES, and

others are measuring the gluon spin contribution to

nucleon spin. However there is no gluon spin opera-

tor which satisfies both gauge invariance and angular

momentum algebra. There is also no quark, gluon

orbital angular momentum operator which satisfies

the gauge invariance and orbital angular momentum

algebra. These situations hindered the study of the

nucleon spin structure.

3 A new set of momentum, orbital an-

gular momentum and spin operators

for the fermion and gauge field parts

3.1 Decomposing the gauge field Aµ into

pure gauge part Apure and gauge invari-

ant (covariant) part Aphys

Let us start from the simpler QED case. It is well

known that to use gauge potential Aµ to describe the

electromagnetic field the Aµ is not unique, i.e., there

is gauge freedom. Under a gauge transformation,

A′µ =Aµ +∂µω(x), (14)

one obtains a new gauge potential A′µ from Aµ. Aµ

and A′µ describe the same electromagnetic field,

Fµν = ∂µAν −∂νAµ = ∂µA
′
ν −∂νA

′
µ. (15)

Such a gauge freedom is necessary because the gauge

potential Aµ plays two role in gauge field theory: the

first is to provide a pure gauge field Apure to com-

pensate the induced field due to the phase change

in a local gauge transformation of the Fermion field

ψ′(x) = e−ieω(x)ψ(x) which must be varied with the
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arbitrary changed phase parameter ω(x); the second

is to provide a physical field Aphys for the physical in-

teraction between Fermion field and gauge field which

should be gauge invariant under gauge transforma-

tion. The pure gauge potential Apure should not con-

tribute to electromagnetic field,

F µν
pure = ∂µAν

pure−∂
νAµ

pure = 0. (16)

This equation can not fix the Apure. One has to find

additional condition to fix it. The spatial part of

Eq. (16) is

∇× ~Apure = 0, (17)

which means ~Apure does not contribute to magnetic

field. This equation can be expressed in another form,

∇× ~Aphys =∇× ~A. (18)

A natural choice of the additional condition in QED

case is

∇· ~Aphys = 0, (19)

which is the transverse wave condition and we know

that this part is the physical one from the Coulomb

gauge quantization. Combining these two conditions,

Eqs. (18) and (19), under the natural boundary con-

dition,

~Aphys(|x|→∞) = 0, (20)

for any given set of gauge field ~A, one can decompose

it uniquely as follows,

~A= ~Apure + ~Aphys, (21)

where

~Aphys(x) = ~∇×
1

4π

∫
d3x′

~∇′× ~A(x′)

|~x− ~x′|
,

~Apure(x) = ~A− ~Aphys(x). (22)

We have to emphasize that for fixed ~A(x), the in-

tegration can be done and the obtained ~Aphys is a

local function. It is easy to prove that these two

parts transform as follows in a gauge transformation

Eq. (14),

~A′
phy = ~Aphy,

~A′
pure = ~Apure− ~∇ω(x). (23)

The time component A0 can be decomposed in the

same manner, from the condition F i0
pure = 0, one ob-

tains

∂iA
0
phys = ∂iA

0 +∂t(A
i −Ai

phys),

A0
phys =

∫x

−∞

dxi(∂iA
0 +∂tA

i−∂tA
i
phys). (24)

The Aµ
pure = Aµ −A

µ
phys can also be obtained from

Eq. (17),(19) and (24) directly,

~Apure = ~∇φ(x),

φ(x) = −
1

4π

∫
d3x′∇

′ · ~A(x′)

|~x− ~x′|
+φ0(x),

A0
pure = −∂tφ(x), (25)

where φ0(x) satisfies the condition,

∇2φ0(x) = 0, (26)

and is determined by the boundary condition. From

Eq. (25) one can see that Aµ
pure, and so Aµ

phys, is

Lorentz 4-vector.

To decompose the gauge potential Aµ =Aa
µT

a for

the gluon field is more complicated than QED case.

We first define the pure gauge potential Aµ
pure (here-

after we omit the color indices if not necessary) by the

same condition, i.e., it does not contribute to color

electromagnetic field,

F µν
pure = ∂µAν

pure−∂
νAµ

pure +ig[Aµ
pure,A

ν
pure] = 0. (27)

In order to make this definition condition looks simi-

lar to Eq. (17), we introduce a notation,

~Dpure = ~∇− ig ~Apure,

~Dpure× ~Apure = ~∇× ~Apure− ig ~Apure× ~Apure = 0.

(28)

The additional condition is even more complicated,

i.e., one does not have a natural choice as Eq. (19) in

QED. We make the following choice[5],

~Dpure = ~∇− ig[ ~Apure, ]

~Dpure · ~Aphys = ~∇· ~Aphys− ig[ ~Ai
pure,

~Ai
phys] = 0. (29)

The summation over the vector component i has been

assumed in the above equation and following ones.

Please note that in the above adjoint representation of

the new covariant derivative operator ~D, the bracket

[Ai
pure,A

i
phys] is not the quantum bracket but a color

SU c(3) group one,

[Ai
pure,A

i
phys] = iCabcA

ib
pureA

ic
physT

a.

These equations can be rewritten as follows,

~∇· ~Aphys = ig[ ~Ai− ~Ai
phys,

~Ai
phys] = ig[ ~Ai, ~Ai

phys],

~∇× ~Aphys = ~∇× ~A− ig( ~A− ~Aphys)×( ~A− ~Aphys),

∂iA
0
phys = ∂iA

0 +∂t(A
i−Ai

phys)− ig[Ai−Ai
phys,

A0−A0
phys]. (30)

These equations can be solved perturbatively: in the

zeroth order, i.e., assuming g= 0, these equations are

the same as those of QED, one can obtain the zeroth

order solution; then taking into account the nonlinear
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coupling through iteration one obtains a perturbative

solution as a power expansion in g.

If one assumes a trivial boundary condition for the

pure gauge field Apure, then one can use the following

equations to obtain a perturbative solution too,

~∇× ~Apure = ig ~Apure× ~Apure,

~∇· ~Apure = ~∇· ~A− ig[Ai
pure,A

i],

∂iA
0
pure = −∂tA

i
pure +ig[Ai

pure,A
0
pure]. (31)

Under a gauge transformation,

ψ′ = Uψ,

A′
µ = UAµU

†−
i

g
U∂µU

†, (32)

where U = e−igω. The ~Apure and ~Aphys will be trans-

formed as

~A′
phys = U ~AphysU

†,

~A′
pure = U ~ApureU

†−
i

g
U∇U †. (33)

3.2 Quantum mechanics

We have mentioned in the introduction part that

even in quantum mechanics, there are already puz-

zles related to the fundamental operators, the ma-

trix elements of canonical momentum, orbital angu-

lar momentum and Hamiltonian of a charged particle

moving in an electromagnetic field are all not gauge

invariant. In order to get rid of these puzzles, gauge

invariant operators have been introduced,

~p ′ = ~p−e ~A,

~L′ = ~x×~p ′. (34)

It is easy to check that the matrix elements of these

operators are gauge invariant. However as we have

pointed out in Eq.(13), that the gauge invariant “mo-

mentum” ~p ′ does not satisfy the canonical momen-

tum Lie algebra, so they are not the real momentum.

The gauge invariant “orbital angular momentum” ~L ′

does not satisfy the angular momentum Lie algebra

either.

Based on our proposed gauge field decomposition

in the above section, we introduce another set of mo-

mentum and orbital angular momentum operators

which satisfy both gauge invariance and the corre-

sponding commutation relation,

~ppure = ~p−e ~Apure,

~Lpure = ~x×~ppure. (35)

The long standing puzzle, the gauge non-

invariance of the expectation value of the

Hamiltonian[4] can be solved in the same manner,

for the non-relativistic quantum mechanics, the new

Hamiltonian is

H =
(~p−e ~A)2

2m
+eA0−e∂tφ(x). (36)

The last term is a pure gauge term, it cancels the

unphysical energy appeared in eA0 induced by the

pure gauge term and then guarantees the expecta-

tion value of this Hamiltonian gauge invariant. It is a

direct extension of Eq. (35) to the fourth momentum

component.

The Dirac Hamiltonian has the same unphysical

energy part and has to be canceled in the same man-

ner as that for the Schrödinger Hamiltonian. Here we

have done a check: starting from a QED Lagrangian

with both electron and proton, under the infinite pro-

ton mass approximation, we derived the Dirac equa-

tion of electron and the gauge invariant Hamiltonian

of the electron part and verified the difference be-

tween the Dirac Hamiltonian obtained from the Dirac

equation and the gauge invariant one.

Our study shows that the canonical momentum,

orbital angular momentum and the Hamiltonian used

in the quantum mechanics are not obserevables, one

must subtract the pure gauge part, the unphysical

one, from these operators as we did in Eqs. (35) and

(36) to obtain the observable ones.

3.3 QED

We have explained that the momentum and an-

gular momentum operators of the Fermion and gauge

field part, Eqs. (10) and (11), derived from the QED

Lagrangian by means of Noether theorem are not

gauge invariant except the Fermion spin. One can

obtain a gauge invariant decomposition by adding a

surface term to Eqs. (10) and (11) or from the Belin-

fante symmetric energy-momentum tensor,

~P = ~Pe + ~Pph =∫
d3xψ†

~D

i
ψ+

∫
d3x~E× ~B (37)

~J = ~Se + ~L′
e + ~J ′

ph =

∫
d3xψ†

~Σ

2
ψ+

∫
d3x~x×ψ†

~D

i
ψ+

∫
d3x~x×( ~E× ~B). (38)

There are two problems with this decomposition: (1),
~L′

e and ~J ′
ph do not satisfy the angular momentum

commutation relation even though in free electro-

magnic field the photon total angular momentum ~J ′
ph

does; (2), there is no separate photon spin and or-

bital angular momentum operators and this feature

will ruin the multipole radiation analysis as we dis-

cussed in the second section.
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Based on the decomposition of the gauge field

potential into pure gauge and the physical parts,

Eq.(21), we obtain the following decomposition,

~P = ~Pe + ~Pph,=

∫
d3xψ†

~Dpure

i
ψ+

∫
d3xEi ~DpureA

i
phys. (39)

~J = ~Se + ~Le + ~Sph + ~Lph =

∫
d3xψ†

~Σ

2
ψ+

∫
d3x~x×ψ†

~Dpure

i
ψ+

∫
d3x~E× ~Aphys +

∫
d3x~x×Ei ~DpureA

i
phys. (40)

Here the operator ~Dpure and ~Dpure are the same as giv-

ing in Eqs. (28) and (29) but with g replaced by e. Be-

cause of the Abelian property of the U(1) gauge field,

the adjoint representation of the operator ~D is sim-

plified to be a simple ~∇. It is not hard to check that

every operator in the above decomposition, Eqs. (39)

and (40) is gauge invariant and satisfies the momen-

tum, angular momentum commutation relation.

The photon spin and orbital angular momentum

operators are well defined as shown in Eq. (40). The

multipole radiation analysis is theoretically sound

now as it should be.

3.4 QCD

One can copy the results for QED, the

Eqs. (39,40), to QCD to obtain the quark, gluon mo-

mentum, orbital angular momentum and spin opera-

tors which satisfy both the gauge invariance and the

canonical momentum and angular momentum com-

mutation relations.

A decomposition of the form of Eqs. (37,38) has

been used in the nucleon spin structure study for the

last ten years[6]. Every operator in those decompo-

sition is gauge invariant and so corresponding to ob-

servable, however because they do not satisfy the mo-

mentum, angular momentum Lie algebra so the mea-

sured ones are not the quark, gluon momentum and

orbital angular momentum and can not be connected

to those used in hadron spectroscopy.

The gluon spin operator had been searched for

more than ten years in the nucleon spin structure

study and no satisfied one was obtained. Now one

can calculate the matrix element of the gluon spin

operator ~Sg =

∫
d3x~E × ~Aphys between the polarized

nucleon state |N(p,s)〉 to obtain the gluon spin con-

tribution to nucleon spin and compared it with the

measured ones.

4 Reexamination of the nucleon inter-

nal structure

The nucleon internal structure has been studied

based on the gauge invariant but canonical momen-

tum, angular momentum Lie algebra violated opera-

tors given in Eqs. (37, 38) for the past years. This led

to a distorted picture of the nucleon internal struc-

ture. For example, the quark and gluon carry half of

the nucleon momentum in the asymptotic limit has

been a deeply rooted picture of nucleon internal mo-

mentum structure. Using the new quark, gluon mo-

mentum operator we recalculated their scale evolu-

tion and obtained the new mixing matrix,

γP = −
αs

4π









−
2

9
ng

4

3
nf

2

9
ng −

4

3
nf









. (41)

Which gives the new asymptotic limit for the renor-

malized gluon momentum,

~PR
g =

1

2
ng

1

2
ng +3nf

~ptotal. (42)

For typical gluon number ng = 8 and quark flavor

number nf = 5, the above equation gives ~pR
g '

1

5
~Ptotal.

This is distinctly different from the renowned results

~PR
g '

1

2
~Ptotal. This latter result is obtained from the

mixing matrix,

γP = −
αs

4π









−
8

9
ng

4

3
nf

8

9
ng −

4

3
nf









, (43)

which is obtained by means of the quark and gluon

momentum operators given in Eq. (37). The mixing

matrix element of Eq. (43) leads to the well known

asymptotic limit,

~PR
g =

2ng

2ng +3nf

~Ptotal. (44)

However the ~Pg and ~Pq used in this quark gluon mo-

mentum scale evolution calculation are not the real

momentum operators, part of the quark momentum

had been shifted to the gluon and gave the superfi-

cial large gluon momentum contribution to nucleon

momentum.

The asymptotic nucleon spin structure[7] is ob-

tained based on the decomposition Eq. (11), a QED

analog of QCD angular momentum decomposition.

The authors had pointed out that the quark and
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gluon orbital angular momentum operators are not

gauge invariant. As we have mentioned in the be-

ginning that in the present gauge field theory, an ob-

servable must be expressed in terms of a gauge invari-

ant operator. The gauge dependent operators used in

this analysis[7] is not measurable ones. Therefore this

asymptotic limit of nucleon spin content should be

reexamined.

Another nucleon internal structure parameters are

the parton distribution function (PDF). Such as the

quark PDF in a target A is defined as,

Pq/A(ξ) =
1

2

∫∞
−∞

dx−

2π
e−iξP+x−

〈ψ̄(0,x−,0⊥)γ+

P exp{ig

∫x−

0

dy−A+(0,y−,0⊥)}ψ(0)〉A, (45)

where a gauge link (Wilson line) is inserted to achieve

the gauge invariance. Based on our gauge field de-

composition discussed in the third section that the

above gauge link not only includes the necessary pure

gauge Apure part to achieve the gauge invariance, but

also includes the physical part Aphys which induced

a physical coupling and makes the PDF defined in

Eq. (45) an interaction-involving one. The interac-

tion term is more clear in the momentum relation,

∫∞
−∞

dξξPq/A(ξ) =
1

2(P+)2
〈ψ̄γ+iD+ψ〉A. (46)

This is just the + componetnt of ~Pq(x) in Eq. (12).

Here the gauge field in D+ originates exactly from

the gauge link in Eq. (45).

To obtain a gauge invariant quark PDF, a gauge

link with the pure gauge part is enough,

Pq/A(ξ) =
1

2

∫∞
−∞

dx−

2π
e−iξP+x−

〈P |ψ̄(0,x−,0⊥)γ+

P exp{ig

∫x−

0

dy−A+
pure(0,y

−,0⊥)}ψ(0)|P 〉A, (47)

this PDF will not includes the redundant physical

gauge interaction and the integration gives the real

quark momentum defined in Eq. (39).

∫∞
−∞

dξξPq/A(ξ) =
1

2(P+)2
〈ψ̄γ+iD+

pureψ〉A. (48)

Analogously, the conventional gluon PDF

Pg/A(ξ) =
1

ξP+

∫∞
−∞

dx−

2π
e−iξP+x−

〈F+ν(0,x−,0⊥)

P exp{ig

∫x−

0

dy−A+(0,y−,0⊥)}F +
ν (0)〉A, (49)

can be replaced accordingly to our strategy as

Pg/A(ξ) =

∫∞
−∞

dx−

2π
e−iξP+x−

〈F+i(0,x−,0⊥)

P exp{ig

∫x−

0

dy−A+
pure(0,y

−,0⊥)}Ai
phys(0)〉A, (50)

where besides the pure gauge link, the physical com-

ponent ~Aphys is used instead of F+
ν as the gauge invari-

ant variable. The second moments of Pg/A and Pg/A

relate to Poynting and the real gluon momentum in

Eqs. (12) and (39), (the QCD quark and gluon mo-

mentums have exactly the same expression as those

of QED, only the subscript e and ph are replaced by

q and g).

Our approach is also convenient in construct-

ing the gauge invariant polarized and transverse-

momentum dependent PDFs with clear particle num-

ber interpretation, and 0ff-forward PDFs which can

be measured to infer the real orbital angular momen-

tums in Eq. (40). For example the polarized gluon

PDF can be defined gauge invariantly as

P∆g/A(ξ) =

∫∞
−∞

dx−

2π
e−iξP+x−

〈F+i(0,x−,0⊥)

P exp{ig

∫x−

0

dy−A+
pure(0,y

−,0⊥)}εij+A
j
phys(0)〉A,

(51)

with a first moment relating to the gauge invariant

gluon spin in Eq. (40).

5 Summary and prospect

Since the establishment of gauge invariance prin-

ciple, we enjoy that the total momentum, angular

momentum and the Lorentz boosting operators of a

gauge system satisfy both the gauge invariance and

Poincaré algebra, however we never have the separate

momentum, orbital angular momentum operators of

the fermion (electron in QED, quark in QCD) and bo-

son (photon in QED, gluon in QCD) part which sat-

isfy both the gauge invariance and the canonical mo-

mentum, angular momentum Lie algebra. We have

the electron, quark spin operator but we never have

the photon, gluon spin operator which satisfy both

the gauge invariance and spin Lie algebra. Even it

had been claimed in some textbooks that it is im-

possible to have a well defined photon spin[3]. The

nucleon spin structure study needs the gluon spin op-

erator, but after about ten years effort in searching

a gluon spin operator since the so-called proton spin

crisis such an effort has almost been given up for the

last ten years. In this report we proposed a new set
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of quark (electron), gluon (photon) momentum, or-

bital angular momentum and spin operators which

satisfy both the gauge invariance and the canonical

momentum, angular momentum Lie algebra.

To achieve this a key point is to separate the gauge

field into pure gauge and physical parts: the formal

is unphysical and can be gauged away as in Coulomb

gauge, it is used to compensate the induced unphys-

ical gauge field due to the local gauge transforma-

tion of the Fermion field to keep the gauge invariance;

the physical part is responsible for the physical cou-

pling between Fermion and boson field. It is phys-

ical and should be gauge invariant (covariant). We

provide a method to do this separation both for the

Abelian U(1) and the non-Abelian SU(3) gauge field.

Recently we found such an idea can be extended to

gravitation field and help to get a general covariant

energy-momentum tensor.

Our proposed momentum operators for the

Fermion part are different from the canonical ones,

the latter ones are not gauge invariant and so do not

represent observables because they include the un-

physical pure gauge field contribution. The new ones

subtract the unphysical pure gauge field contribution

and so they are gauge invariant and represent the ob-

servables.

We achieved to obtain a gauge invariant orbital

angular momentum and spin operators of the photon

and gluon by means of the physical part of the gauge

field, Eq. (40), which provides the theoretical basis

of the widely used multipole radiation analysis, the

photon spin and orbital angular momentum used in

quantum computation and communication study, the

gluon spin contribution in the nucleon spin structure

study.

The Poincaré algebra can not be fully main-

tained for the momentum, angular momentum and

Lorentz boosting operators of the individual Fermion

and boson part of an interacting gauge field system.

What is the meaning of these observables if they

are not Lorentz covariant? We have shown that the

momentum and angular momentum algebra can be

maintained simultaneously with the gauge invariance.

How much part of the Poincaré algebra can be main-

tained for the operators of the interacting Fermion

and boson separately, especially the Lorentz covari-

ance can be maintained to what extent are left for

further study.

The new asymptotic limit of quark and gluon par-

ton momentums of a nucleon have been obtained,

the immediate problem is the asymptotic limit of

the quark and gluon orbital angular momentums and

spins.

The gluon spin contribution to the nucleon spin is

under measurement in different labs. A lattice QCD

calculation with the gauge invariant gluon spin oper-

ator is called for.

To obtain the new PDFs the factorization theo-

rems with respect to the new PDF formula should be

examined.

In summary, the nucleon internal structure is bet-

ter to be reexamined based on the new quark, gluon

momentum, orbital angular momentum, spin opera-

tors and parton distribution functions and our picture

of the nucleon internal structure might be modified.

We thank Prof.X. D. Ji, K. F. Liu and S. J. Wang

for stimulating discussions.
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