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Restoration of rotational symmetry in deformed

relativistic mean-field theory *
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Abstract We report on a very recently developed three-dimensional angular momentum projected relativistic

mean-field theory with point-coupling interaction (3DAMP+RMF-PC). Using this approach the same effective

nucleon-nucleon interaction is adopted to describe both the single-particle and collective motions in nuclei.

Collective states with good quantum angular momentum are built projecting out the intrinsic deformed mean-

field states. Results for 24Mg are shown as an illustrative application.
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1 Introduction

Equivalent to Kohn-Sham theory, self-consistent

mean-field (SCMF) frameworks represent a very suc-

cessful approach to low energy nuclear structure stud-

ies. In these theories, the most important correlations

in nuclei, including the long-range particle-particle

correlation and the short-range particle-hole corre-

lation between nucleons, can be taken into account

in terms of a universal energy density functional,

which provides a consistent microscopic description

of a whole range of structure phenomena[1]. Both

the non-relativistic SCMF theories, such as Hartree-

Fock (HF) or Hartree-Fock-Bogoliubov (HFB) with

Skyrme or Gogny forces, and the relativistic SCMF

theory, such as the relativistic mean-field (RMF) with

meson exchange or zero-range point-couplings, have

been successfully applied to the study of many prop-

erties of nuclei at and far from the valley of β-stability.

However, the product wavefunctions used as

ansatz in all these SCMF theories tend to show

“spontaneous symmetry breaking”, i.e., the ap-

proximate many-body wavefunction does not obey

the same symmetries as the underlying two-body

Hamiltonian[2], like the translational, rotational or

gauge symmetries connected with the particle num-

ber. In these cases, the mean-field description of nu-

clear properties will show some deficiencies, like miss-

ing correlations associated with symmetry restoration

and mixing contributions to the ground-state coming

from the low-lying excited states, absence of selection

rules for transitions, improper description of super-

fluid and shape phase transitions, etc. Moreover, in

the vicinity of phase transitions in finite systems it is

imperative to consider at least to some degree quan-

tum fluctuations. The canonical approach to include

these effects is through the restoration of broken sym-

metries using projection on top of the generator co-

ordinate method (GCM)[3, 4], which has been widely

used in modern nuclear physics studies[1, 2, 5].

For example, for the description of axially sym-

metric mean-field nuclei, one dimensional angular

momentum projection (1DAMP) is enough for the

restoration of rotational symmetry. However, and
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due to its very demanding numerical nature, only in

the last decade such an approach based on SCMF

has been possible[6—8]. For triaxially deformed nuclei,

full three dimensional angular momentum projection

(3DAMP) is essential, and very recently the imple-

mentation based on non-relativistic SCMF (cranked

HF or HFB) theories have been reported[9, 10].

Since in the past decades relativistic mean-field

theory (RMF) has achieved great success in the de-

scription of nuclear properties, especially the strong

spin-orbit coupling[11], Coester line[12], isotope shift

in Pb isotopes[13], pseudo-spin symmetry[14] and spin

symmetry in anti-nucleon spectra[15], it is only nat-

ural to extend it in an effort to improve its pre-

dictive power. In that spirit, we have developed

full three dimensional angular momentum projec-

tion on top of point-coupling relativistic mean-field

(3DAMP+RMF-PC) theory.

This manuscript is organized as follows. In

Sect. 2, we briefly introduce the theoretical aspects

of the 3DAMP+RMF-PC approach. In Sect. 3, we

present an illustrative calculation in 24Mg, and a

short summary and outlook in Sect. 4.

2 3D-angular momentum projected

relativistic point-coupling approach

The 3DAMP+RMF-PC approach can be divided

into two different consecutive tasks: the first is the

determination of the triaxially deformed mean-field

ground-state; the second is the projection of the

ground-state wavefunction on to good quantum an-

gular momentum.

The starting point of RMF-PC approach is the

following Lagrangian density[16],

L = ψ̄(iγµ ∂µ−m)ψ−
1

4
F µνFµν−e

1−τ3
2

ψ̄γµψAµ−

1

2
αS(ψ̄ψ)(ψ̄ψ)−

1

2
αV(ψ̄γµψ)(ψ̄γµψ)−

1

2
αTS(ψ̄τψ) •(ψ̄τψ)−

1

2
αTV(ψ̄τγµψ) •(ψ̄τγµψ)−

1

3
βS(ψ̄ψ)3−

1

4
γS(ψ̄ψ)4−

1

4
γV[(ψ̄γµψ)(ψ̄γµψ)]2−

1

2
δS ∂ν(ψ̄ψ)∂ν(ψ̄ψ)−

1

2
δV ∂ν(ψ̄γµψ)∂ν(ψ̄γµψ)−

δTS

2
∂ν(ψ̄τψ)∂ν(ψ̄τψ)−

δTV

2
∂ν(ψ̄τγµψ)∂ν(ψ̄τγµψ). (1)

The Lagrangian density contains eleven coupling con-

stants αS, αV, αTS, αTV, βS, γS, γV, δS, δV, δTS and

δTV. The four Greek letters refer to the kind of con-

tact interaction: α for linear four-fermion terms, β

and γ for third- and fourth-order terms respectively,

and δ for derivative couplings. The Latin subscripts

indicate the symmetries associated to the coupling: S

stands for scalar, V for vector, and T for isovector.

The parameter set adopted in this work is the widely

used PC-F1[16], which does not include the poorly-

constrained scalar isoscalar channel.

From the Lagrangian density (1), and using the

classical time-dependent variational principle, one

can obtain the fermion and boson equations of mo-

tion. Their static solution under the no-sea approxi-

mation provides the ground-state wavefunction of the

nuclear system. Pairing correlations are taken into

account using a BCS-like monopole interaction.

This procedure often gives a deformed solution

|Φ(q)〉, with mass quadrupole moment q, for the nu-

clear system ground-state when the spherical symme-

try constrain is relaxed. In order to obtain an energy

spectrum that can be compared with experimental

data, one has to go beyond mean-field theory.

Therefore, we have implemented full three-

dimensional angular momentum projection for triaxi-

ally deformed intrinsic mean-field ground-states. Re-

garding the D2 symmetry of a triaxial shape, one can

construct a wavefunction |ΨJMα,q 〉 eigenstate of the an-

gular momentum operator Ĵ and its projection Ĵz
as[17],

|ΨJMα,q 〉=
∑

K>0

fJKα (q)

1+δK0

| JMK+, q〉 (2)

where α= 1,2, · · · , labels consecutive collective excita-

tion states. The angular momentum projected state

| JMK+, q〉 is given by

| JMK+, q〉= [P̂ J
MK+(−1)J P̂ J

M−K ] |Φ(q)〉, (3)

where the projection operator P̂ J
MK is defined by

P̂ J
MK =

2J+1

8π
2

∫
dΩDJ∗

MK(Ω)R̂(Ω), dΩ= dφsinθdθdψ,

(4)

with Ω being the set of three Euler angles (φ,θ,ψ).

DJ
MK(Ω) is the Wigner D-function with the rota-

tional operator chosen as R̂(Ω) = eiφĴzeiθĴyeiψĴz .

The expansion coefficients fJK
α

(q) in Eq. (2) are

determined by requiring the expectation value of the

Hamiltonian, applied to |ΨJM
α,q 〉, to be stationary with

respect to fJK∗

α
(q),

∑

K′>0

{

HJ
KK′(q;q)−EJ

α
N J
KK′ (q;q)

}

fJK
′

α
(q) = 0, (5)

where the overlap kernels OJ
KK′(q;q) are determined

by (O=N ,H),



Suppl.. YAO Jiang-Ming et alµRestoration of rotational symmetry in deformed relativistic mean-field theory 23

OJ
KK′ (q;q) = ∆KK′

[

OJ
KK′ (q;q)+

(−1)2JOJ
−K−K′ (q;q)+(−1)JOJ

K−K′ (q;q)+

(−1)JOJ
−KK′ (q;q)], (6)

with Ô= 1, Ĥ, and ∆KK′ = 1/[(1+δK0)(1+δK′0)],

OJ
KK′ (q;q) =

2J+1

8π
2

∫
dΩ〈Φ(q)|ÔR̂(Ω)|Φ(q)〉DJ∗

KK′ (Ω).

(7)

The overlaps 〈ÔR̂(Ω)〉 of the kernels OJ
KK′ (q;q) are

determined with the help of the generalized Wick’s

theorem[18] or Onishi formulae[19]. More details about

the formalism can be found in Ref. [20].

3 Results and discussion

Figure 1 shows the projected norm kernelN J
00(q,q)

for the four lowest angular momenta as functions of

the mass quadrupole moment q in 24Mg. As expected,

one finds that the spherical mean-field ground-state

has a J = 0 component only. However, several states

with non-zero angular momentum can be projected

out from intrinsic deformed mean-field states. It also

shows that the larger the deformation of the intrinsic

state, the higher angular momentum J of the domi-

nant component | JM〉.
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Fig. 1. Norm kernel N J
00(q,q) (6) as a function

of the mass quadrupole moment q.

Figure 2 shows the potential energy curves of col-

lective states with the four lowest angular momenta in

24Mg, as functions of the deformation β(γ = 0). The

corresponding mean-field potential energy curve is

given as well. The energy gap (∼5 MeV) between the

0+ curve and mean-field curve is due to the restora-

tion of rotational symmetry. For the spherical config-

uration, β= 0, only the J = 0 component contributes

(as depicted in Fig. 1), and thus there is no energy

gain. The increased spread for the curves when cur-

rents were not included in the projection clearly show

their effect on the nuclear moment of inertia.
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Fig. 2. Potential energy curves of the projected

Jπ = 0+,2+,4+,6+ states in 24Mg, as a func-

tion of the deformation β(γ = 0), with (solid

lines) and without (dashed lines) the inclusion

of currents. The mean-field potential energy

surface (dash-dotted line) is given as well.

4 Summary and concluding remarks

In conclusion, a new code for three dimensional

angular momentum projection has been developed

on top of RMF-PC, in which pairing correlations are

taken into account by BCS theory. Collective eigen-

states of Ĵ and Ĵz are built via projection of intrin-

sic deformed mean-field states. Results for 24Mg,

where only axial deformation has been considered,

have been presented as an illustrative application.

Investigations in triaxial nuclei are currently under

progress.
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