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Study of magnetic-rotation in 82Rb by

g-factor measurements *
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Abstract Magnetic rotation in 82Rb has been investigated for the first time by g-factor measurement of

intra-band states of the magnetic-rotational band built on the 11- state. The g-factors were measured by a

TMF-IMPAD method and calculated by a semi-classical model of independent particle angular momentum

coupling assumption. The g-factors and deduced shears angles decrease with the increasing of spin along the

band, illustrating a step-by-step alignment of the valence protons and neutrons. The rapid alignment of the

valence neutrons leads to a decrease of g-factors. The present results vividly reveal the shears mechanism of

magnetic rotation.
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1 Introduction

The magnetic rotation is a novel nuclear rota-

tion occurring in nuclei with nearly spherical shape.

Magnetic-rotational band is characterized by mag-

netic dipole (M1) transitions. The angular momen-

tum vector of the valence proton particles is perpen-

dicular to that resulting from the valence neutron

holes at the band head of magnetic rotation[1]. The

resulting proton and neutron vectors form the blades

of a pair of shears and the total angular momentum

increases by closing the blades of these shears along

the band. Hence, the magnetic rotational band is

called the shears band[2]. As the spins of particles

and holes are fully aligned, the highest-spin state is

formed and the band is terminated. The magnetic ro-

tation has been described theoretically by the tilted

axis cranking (TAC) model[3] and the residual inter-

action between proton and neutron[4].

The shears mechanism of a step-by-step alignment

of the high-spin particle and hole angular momenta

can be well investigated by measuring g-factors of

magnetic rotational states. The g-factor or magnetic

moment is very sensitive to the proton and neutron

alignments. The g-factors of high-j protons are pos-

itive and large due to the substantial contribution

from orbital angular momentum. Since there is no

orbital contribution g-factors of high-j neutrons are

negative and small. The g-factors are expected to

vary systematically as the shears close or the spin

goes up in the magnetic-rotational band. Therefore,

g-factors of intra-band states can provide direct evi-

dence of shears mechanism of magnetic rotation.
82Rb (Z=37, N=45) lies in the mass region of

transition from deformed to spherical shapes and

is particularly suitable for studying magnetic rota-

tion. The magnetic rotational band in 82Rb has been

observed by H. Schnare et al[5], R. Schwengner et

al[6] and J. Döring et al[7]. Fig. 1 shows the de-

cay scheme of the negative parity ∆I=1 magnetic-

rotational band built on the 11- state in 82Rb.

The present work was motivated to study mag-
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netic rotation in 82Rb by measuring g-factors of four

intra-band states of magnetic rotation for the first

time.

Fig. 1. 82Rb magnetic-rotational band decay scheme.

2 Experimental details

The g-factors of four intra-band states in the

magnetic-rotational band built on the 11- state

in 82Rb were determined by the TMF-IMPAD

(transient magnetic field-ion implantation perturbed

angular distribution) method[8, 9]. The magnetic-

rotational states in 82Rb were populated by the

fusion-evaporation reaction 60Ni(27Al,4pn) 82Rb with

a 130 MeV Al beam from the HI-13 tandem accel-

erator. The reaction cross section obtained with a

PACE4 program[10] is ∼40 mb at 130 MeV.

The schematic drawing of the TMF-IMPAD set-

up is shown in Fig. 2[8]. A three layer target as-

sembly of 60Ni-Fe-Cu and a Ta beam stopper 2 mm

from the target in the down stream were located in

a “T” shaped bronze target chamber between the

two pole tips of the polarizing electromagnet. The

three layer target assembly was made in such a way

that a 0.439 mg·cm−2 target layer of 60Ni enriched

to 99.6% was evaporated onto a well annealed nat-

ural Fe layer of 1.51 mg·cm−2, on the other side of

which a Cu stopper layer of 12 mg·cm−2 was evap-

orated. The 82Rb recoiling nucleus with an average

velocity of 0.028∼0.029c passed through the Fe layer

in a 0.35 ps traverse time and stopped in the Cu stop-

per layer. The ferromagnetic Fe layer was polarized

by a 0.16 T magnetic field, the direction of which was

perpendicular to the beam-detector plane and auto-

matically reversed up and down every 120 seconds

during the measurement. As the 82Rb nucleus moved

along the polarized Fe layer, it experienced a transient

magnetic field of ∼1.56×103 T, and the nuclear pre-

cession about the magnetic field direction took place.

The nucleus completed its decay to the ground state

in the perturbation-free Cu stopper. The emitted γ

rays were detected by four BGO Compton suppressed

HPGe detectors placed in the beam-detector plane at

θ = ±60◦ and θ = ±120◦ with respect to the beam

direction. The γ-γ coincidence data were recorded in

a five-parameter event-by-event mode. The five pa-

rameters are specified by the field direction and the

4γ-ray detectors.

Fig. 2. Schematic drawing of TMF-IMPAD set-up.

In data analysis eight singles spectra were con-

structed according to 4 detectors with two polariz-

ing field directions. In case γ ray peaks of interest

are not well separated, gated spectra were generated.

The nuclear precession of a state was inferred from

a double ratio obtained through single ratios ρ(±θi)

formed with the counting rates of an adjacent pair of

detectors at ±θi for a observed transition[8, 11]. The

γ ray counts were obtained from the singles or gated

spectra. The precession angle ∆φ can be obtained by

∆φ = ε/S(θ) , (1)

where the term ε is an experimental ratio defined as

ε =
ρ−1

ρ+1
(2)

and S(θ) is the logarithmic slope of γ-ray angular

distribution:

S(θ) =
1

W (θ)

dW (θ)

dθ
. (3)

The nuclear g factor can be inferred from the pre-

cession angle ∆φ and the transient magnetic field

strength BTMF(t) experienced by a nucleus:

∆φ =−(gµN/~)

∫ ex

en

BTMF(t)e−t/τdt , (4)

where µN is the nuclear magneton and τ is the mean

lifetime of nuclear state. The transient magnetic field

BTMF(t) is given by the Shu’s parameterization[12]

BTMF(t) = 926(ν/ν0)
0.45T , (5)

where ν0 is the Bohr velocity and ν is the velocity of

a recoiling nucleus. A computer program was written

and used for precession transfer correction[13].
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3 Result and discussion

A semi-classical model based on the independent

particle angular momentum coupling assumption was

used to determine the configuration and calculate

the g-factors and shears angles of the intra-band

states[4]. Four-quasi particle configuration π(g9/2)
2⊗

π(p3/2,f5/2)⊗ν(g9/2) was obtained from the measured

g-factors. Fig. 3 shows the measured and calculated

g-factors. They are in good agreement within the ex-

perimental error and decline with the increasing of

spin. Note that the configuration π(p3/2)⊗π(g9/2)
2⊗

ν(g9/2) can give g-factors only up to spin 14.

Fig. 3. Measured and calculated g-factors along

magnetic-rotational band in 82Rb.

As shown in Fig. 4, the calculated shears angles

θ between
−→
j π and

−→
j ν of proton and neutron angu-

lar momenta decrease with the spin increasing along

the band and the shears angle at the band-head is

88◦. Fig. 4 also illustrates the calculated angle θπ

between the proton and total angular momenta. It

can be known that the angle θν between the neu-

tron and total angular momenta contributes a great

part to the shears angle change. The valence neu-

tron alignment towards the total angular momentum

is much faster than the proton alignment, leading

to a decrease of g-factors along the band. The de-

creasing of both g-factors and shears angles with the

spin increase indicates that the angular momentum

along the magnetic-rotational band is generated by

the shears effect of a step-by-step alignment of the

high-spin valence protons and neutrons.

θπ
θπ

Fig. 4. Calculated shears angle θ and θπ as a

function of spin in 82Rb.

4 Conclusion

Magnetic rotation has been studied for the first

time by the g-factor measurement of the magnetic-

rotational band built on the 11- state in 82Rb. The g-

factors were also calculated by a semi-classical model

of independent particle angular momentum coupling

assumption on the basis of the 4 qp configuration

π(g9/2)
2 ⊗π(p3/2,f5/2)⊗ν(g9/2). Both g-factors and

shears angles decrease with the increasing of spin in

the band, illustrating that the angular momentum

along the magnetic-rotational band is generated by

the shears effect of a step-by-step alignment of the

high-spin valence protons and neutrons. The rapid

alignment of the valence neutron angular momentum

towards the total angular momentum leads to a de-

crease of the g-factors along the band. The present

results provide vivid evidence for the shears mecha-

nism of magnetic rotation.
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