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Stochastic motion of the untrapped particle in

electrostatic mode

ZHU Xiong-Wei(Á<�)1)

Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China

Abstract The stochastic energy diffusion of the untrapped particle in the electrostatic mode is investigated

analytically. We find that the equilibrium electrostatic field of periodical structure plays the same role as the

usual focusing magnetic field to lead the test particle to stochastic motion. The resonance overlapping criterion

for the random state is given, and also the Fokker-Planck-Kolmogorov approach to diffusion is considered for

our system.
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1 Introduction

Theoretical models have been developed to inves-

tigate the transition to stochastic motion of electrons

under the action of an electromagnetic wave prop-

agating obliquely with respect to a uniform mag-

netic field [1–5]. In particular, the threshold value

of the field amplitude has been studied. Following

the Fokker-Planck-Kolmogorov (FPK) approach, the

energy diffusion in the presence of a wave propagat-

ing perpendicularly to the magnetic field was studied,

and the expression of the diffusion coefficient has been

given analytically.

The aim of the present paper is the investiga-

tion of the energy diffusion of untrapped particle in

BGK (Bernstein-Greene-Kruskal) mode moving in a

perturbed monochromatic electrostatic wave. BGK

mode is a kind of general electrostatic equilibrium

[6], whose electrostatic field possesses spatial struc-

ture. In the case of the untrapped particle, one can

build an equilibrium electrostatic field of periodical

structure in space and see that the equilibrium elec-

trostatic potential plays the same role as the magnet-

ically confined field to lead the particle to the random

state.

2 Electrostatic equilibrium

In the case of the untrapped particle, the one-

dimension distribution function of the electron and

the ion can be expressed as
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where qa,ma(a= i,e) are the charge and mass of the

electron and the ion, Va0(a= i,e) is constant, and φ

is the electrostatic potential and satisfies
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where n0 =ne =ni is the mean density of the particle.

Applying Eq. (2) to (3) has the solution

φ=φmax sin(ΛDx), (4)
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can be considered as the generalized Debye length.

3 Hamiltonian of the charged particle

Suppose that there exists a perturbed monochro-

matic electrostatic wave ψ cos(kx−wt), then the

Received 7 June 2009

1)E-mail: zhuxw@ihep.ac.cn
©2009 Chinese Physical Society and the Institute of High Energy Physics of the Chinese Academy of Sciences and the Institute

of Modern Physics of the Chinese Academy of Sciences and IOP Publishing Ltd



410 Chinese Physics C (HEP & NP) Vol. 34

Hamiltonian of a particle moving in the field has the

following form

H =
1

2ma

p2+qaφmax sin(ΛDx)+qaψ cos(kx−wt). (5)

Generally, Eq. (5) describes the motion of charge

particle in two electrostatic waves. The interaction of

the two waves can lead the particle to move stochas-

tically, the first term on the right side of Eq. (5) is

considered as the unperturbed part, and the rest as

the perturbed part. However, the characteristics of

the second and third terms on the right side of Eq. (5)

are quite different. The second term is a small intrin-

sic term of our system which can be seen to play the

same role as the confined magnetic field in the later

analysis, while the third term represents the external

perturbation whose amplitude can be very large. In

the following, we want to derive the criterion for the

occurrence of stochasticity, driven by only the third

term. Therefore it is natural to divide H into the

following form.

H = H0 +H1,

H0 =
1

2ma

p2 +qaφmax sin(ΛDx), (6)

H1 = qaψ cos(kx−wt). (7)

In the absence of the pertubation, H0 is a periodi-

cal function of the variable x. One can transform the

variables (p,x) to action-angle variables (I,θ):

I =

∫ 2π
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1
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Using H0 � qaφmax, one gets
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The variable x can be expressed as where

x=
ΛD

2π
θ+asinθ, (10)

where a is the amplitude. Substituting Eq. (10) into

(7), we get
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Using Eqs. (11), (8), we can express H as
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4 Island overlapping criterion and

FPK equation

For low amplitude ψ, the particle dynamics is well

described by the Hamiltonian (12), while increasing

ψ, the motion is no longer regular and the transtion

to chaotic motion occurs for ψ>ψc, where ψc is the

threshold value. We use the Chirikov criterion [7] for

the resonance overlapping to estimate ψc. Let ∆In

be the half-width of an island separatrix around the

nth harmonic,and δIn the distance between the nth

and n(+) 1st in the absence of the perturbation, then

the resonance condition
(
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)
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defines the resonant value of the action
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is then
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The expression for the separatrix width can be com-

puted whenever the Hamiltionian (12) is well approx-

imated by

H(n)(I,θ) =
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The half-width of the separatrix is given by letting

H(n) = qaψJn(ka), then
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and the criterion for the overlapping of the two reso-

nances is then

sn(ψ) =
∆In +∆In+1

δIn

> 1. (15)

Finally the threshold value of ψc is estimated as
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Applying the FPK approach [8–10], a diffusion

equation for the distribution function averaged over
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the phases f(I, t) can be written for the system de-

scribed by the Hamiltonian (12)

∂f
∂ t

=
1

2

∂
∂I

(
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∂f
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)

. (17)

The actual expression for the diffusion coefficient

D(I) depends on the assumptions of the phase dy-

namics. If the effects of the phase correlations are

taken into account D(J) reads as �(∆I)2�

t
, where

�···� represents the average over the initial phase.
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where τc is phase correlation decay time. When

τc → 0, D(J) becomes

D(I) = πq2
a
ψ2

+∞
∑

m=0

δ

((
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2π

)
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)

. (19)

5 Summary

In summary, the equilibrium electrostatic field is

found to play the same role as the usual uniform mag-

netic field to lead particle moving in a monochromatic

electrostatic wave to the random state.
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