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η-nucleus bound states in nuclei *
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Abstract The binding energies εη and widths Γη of η-mesic nuclei are calculated. We parameterize the η

self-energy in the nuclear medium as a function of energy and density. We find that the single-particle energies

are sensitive to the scattering length, and increase monotonically with the nucleus. The key point for the study

of η-nucleus bound states is the η-nuclear optical potential. We study the s-wave interactions of η mesons in

a nuclear medium and obtain the optical potential Uη ≈−72 MeV. Comparing our results with the previous

results, we find that the ηN scattering length aηN is indeed important to the calculations. With increasing

nuclear density the effective mass of the η meson decreases.
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1 Introduction

The nuclear medium effects on meson proper-

ties are interesting and have been investigated exten-

sively in nuclear physics. The pion-nucleon and kaon-

nucleon interaction have been studied much both the-

oretically and experimentally. Haider and Liu [1, 2]

first predicted the existence of the η-mesic nucleus

which is a bound state of an η meson in a nucleus.

The formation of such bound systems is caused by

the attractive interaction between the η meson and

all the nucleons in the nucleus. According to many

theoretical models which were proposed for the ηN

interaction [3–6], the attractive interaction has a cor-

relation with the η self-energy.

The existence of these η-mesic nuclear states de-

pends on the value of the ηN scattering length aηN.

Fits to various data have yielded very different aηN

[7–11]. These very different values arise because aηN

is not directly measurable and must be inferred indi-

rectly from other observations, such as the πN phase

shifts.

In this paper, we study the properties of the η

in the nuclear medium from a theoretical point of

view. In order to produce an accurate as possible re-

sult for the η bound states in nuclei, we parameterize

the η self-energy as a function of energy and density.

The present work follows closely the method used in

Ref. [6] to obtain the η self-energy by summing up

the ηN interaction in the medium of all the nucleons

in the Fermi sea. Combining with the η self-energy

we obtain the binding energies and widths of the η

states in different nuclei. We believe that it is valu-

able to understand the current experimental situation

by analyzing in detail the dynamics pertinent to the

formation of η-mesic nuclei.

The key point for the study of η-nucleus bound

states is the η-nuclear optical potential. According to

Ref. [6], we parameterize the η self-energy as a func-

tion of energy and density and our result is Uη ≈−72

MeV. There have several investigations been done in

this field. Waas and Weise studied the s-wave in-

teractions of η mesons in the nuclear medium and

obtained a potential Uη ≈−20 MeV [3]. Chiang et al.

obtained Uη ≈−34 MeV by assuming that the mass

of the N∗(1535) does not change in the medium [4].

Tsushima et al. predicted that the η-meson potential

was typically −60 MeV using the quark-meson cou-

pling (QMC) model [5]. Inoue and Oset also obtain

Uη ≈ −54 MeV with their model [6]. Zhong et al.

obtained Uη ≈ −83 MeV by deducing the η-nucleon

interaction from the heavy-baryon chiral perturbation

theory in the next-to-leading-order terms [12]. Obvi-

ously, there are model dependencies in describing the
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in-medium properties of the η meson.

Finally, we mention that as the existence of η-

mesic nuclei has not yet been experimentally con-

firmed with certainty, there are no data to be fitted.

Hence, all of our results as well as those of others

are pure predictions. If the existence of the η-mesic

nucleus is experimentally confirmed, many new stud-

ies of nuclear and particle physics will become possi-

ble [13].

The paper is organized as follows. In the next sec-

tion, we explain our approach to parameterize the η

self-energy as a function of energy and density. Re-

sults and discussions are presented in Sec. 3. We cal-

culate the binding energies and widths of the η state

in different nuclei. Comparing our results with the

previous results, we find that the ηN scattering length

aηN is indeed important to the calculations. The con-

clusions of our study are summarized in Sec. 4.

2 Formulation

The effective mass of the η is defined as the pole

of the full propagator with self-energy corrections of

the η in the limit ~k→ 0. From the full propagator of

the η we find that the effective mass m∗

η
of the η is

determined by the equation

(k0)2−m2
η
−Re[Πη(k0,~0;ρ)] = 0, (1)

and

m∗

η
=

{

m2
η
+Re[Πη(k0 = mη,~0;ρ)]

}1/2
, (2)

where Πη(k0,~0;ρ) is the η self-energy in the nuclear

medium. mη and k0 denote the mass and energy of

the η meson respectively. ρ = ρs is the scalar density

of nucleon. The optical potential Uη(ρ) and the ef-

fective η-neutron scattering length aηN(ρ) are defined

as

Uη(ρ) =
Πη(mη,~0;ρ)

2mη

, (3)

aηN(ρ) =−

1

4π

MN

MN+mη

Πη(mη,~0;ρ)

ρ
, (4)

with MN the nucleon mass. We evaluate the η self-

energy for k0 = mη and ~k = 0 as a good approxi-

mation. These values are useful when we study the

bound states of an η in nuclei using the local density

approximation.

The η meson in the nuclear medium satisfies static

Klein-Gordon equation [14]:

[∂µ ∂µ
+m2

η
+Πη(k

0,~0;ρ)]η = 0. (5)

According to Eq. (5), with η = Rl(r)Yl(θ,ϕ), this

leads to
[

1

r

d2

dr2
+(E2

−m2
η
)−Πη−

l(l+1)

r2

]

Rl(r) = 0, (6)

with χ(r) = rRl(r), therefore the above equation can

be written as

d2χ(r)

dr2
−

[

(E2
−m2

η
)−Πη−

l(l+1)

r2

]

χ(r) = 0. (7)

As expressed in Appendix A, Eq. (7) can be solved

by the Gowell central differential numerical method

which has been studied in Ref. [15].

We parameterize the η self-energy Πη(k0,~0;ρ) as

a function of energy and density [6]. We can param-

eterize it in the region −50 MeV < k0
−mη < 0, as

Re[Πη(k
0,~0;ρ)] = a(ρ)+b(ρ)(k0

−mη)+

c(ρ)(k0
−mη)

2 +d(ρ)(k0
−mη)

3, (8)

Im[Πη(k0,~0;ρ)] = e(ρ)+f(ρ)(k0
−mη)+

g(ρ)(k0
−mη)

2 +h(ρ)(k0
−mη)3, (9)

with

a(ρ) = −36200.3ρ/ρ0−24166.6ρ2/ρ2
0 MeV2,

b(ρ) = −1060.05ρ/ρ0−326.803ρ2/ρ2
0 MeV,

c(ρ) = −13.2403ρ/ρ0−0.154177ρ2/ρ2
0,

d(ρ) = −0.0701901ρ/ρ0+0.0173533ρ2/ρ2
0 MeV−1,

e(ρ) = −43620.9ρ/ρ0+11408.4ρ2/ρ2
0 MeV2,

f(ρ) = −1441.14ρ/ρ0+511.247ρ2/ρ2
0 MeV,

g(ρ) = −27.6865ρ/ρ0+10.0433ρ2/ρ2
0,

h(ρ) = −0.221282ρ/ρ0+0.0840531ρ2/ρ2
0 MeV−1.

By using the Klein-Gordon equation and substituting

ρ→ ρ(r) in the spirit of the local density approxima-

tion, we can then obtain the binding energies and

widths of the η state in different nuclei.

The spatial distribution of the nucleon density in

nuclei is best described by the Fermi function [16]

ρ(r) =
ρ0

1+e(r−R)/a
, (10)

where the quantity ρ0 is the nucleon density at the

center of the nucleus and R corresponds to the dis-

tance from the center at which the density has de-

creased to half its maximum value. The quantity a

characterizing the thickness of the surface layer in

which the rapid decrease of density occurs is usually

called the diffuseness of the nuclear surface.

The complex energy E is given by

E =−εη +mη− iΓ/2 , (11)
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where the real part corresponds to the η single parti-

cle binding energy εη, it is defined as

εη = mη−ReE . (12)

The imaginary part of the complex energy corre-

sponds to the widths of the η state in the nuclear

medium,

Γ =−2ImE . (13)

3 Results and discussion

The binding energies and widths of the η-mesic

nuclei given by the off-shell microscopic calculation

are presented in Table 1. As can be seen from the

table, the binding energy increases as the nucleus be-

comes heavier. In addition, the number of bound

states of the η increases with increasing mass num-

ber A. The p-wave and d-wave interaction are also

attractive at the threshold but their magnitudes are

very small and have a negligible effect on εη and Γη

[17, 18]. But if the nucleus is heavy enough, for ex-

ample, 132
η
Xe and 208

η
Pb, the 1p orbit of the η meson

bound states also exists. It would be interesting to

compare these results with experimental data.

Table 1. Binding energies and widths (both in

MeV) of η-mesic nuclei given by the full off-

shell calculation.

nucleus orbit εη Γη

28
η
Si 1s 37.6 62.4

32
η
S 1s 38.2 66.4

36
η
Ar 1s 39.8 63.8

40
η
Ca 1s 40.5 61.9

44
ηTi 1s 42.1 61.8

132
ηXe 1s 48.9 65.0

1p 34.7 46.3
208

ηPb 1s 50.2 62.0

1p 35.5 42.6

The optical potential Uη(r) of η mesons in 40Ca as

a function of the nuclear radius r is plotted in Fig. 1.

The solid line denotes the real part of the potential,

and the dotted line denotes the imaginary part of the

potential. From Fig. 1, we can see that the optical po-

tential Uη(r) decreases with increasing nuclear radius

from about 72 MeV to zero. On the one hand, the op-

tical potential increases with the nuclear density. On

the other hand, the optical potential depends strongly

on the value of the scattering length aηN. In our cal-

culations, the optical potential can change from −65

to −88 MeV when we modify the scattering length

aηN from 0.87 to 1.12 fm.

Fig. 1. The optical potential Uη(r) of η mesons

in 40Ca as a function of the nuclear radius r.

The solid line denotes the real part of the po-

tential, and the dotted line denotes the imag-

inary part of the potential.

Figure 2 shows the radial wave function distribu-

tion of η mesons in 40Ca as a function of the nuclear

radius r. From Fig. 2, we can see that the radial

wave function of the η mesons is a regular distribution

for r < 5 fm. The radial wave function distribution

reaches a maximum at r = 2 fm and almost vanishes

in the r > 5 fm region. From this we can conclude

that the η mesons in 40Ca are mainly concentrated in

the center of the nuclei.

Fig. 2. The radial wave function of η mesons in
40Ca as a function of the nuclear radius r.

With the normal nuclear density ρ0 = 0.15 fm3,

the effective mass of the η meson m∗

η
as a function

of the nuclear density ρ/ρ0 is shown in Fig. 3. We

observe that with increasing nuclear density the ef-

fective mass of the η meson decreases from the value

of its free mass, i.e., 547.3 MeV, to about 488 MeV.

The decreasing of the effective mass of the η meson

implies a lengthening of the interacting range between

nucleons.
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Fig. 3. The effective mass of the η meson m∗

η

as a function of nuclear density ρ/ρ0, with the

normal nuclear density ρ0 =0.15 fm3.

4 Conclusions

In summary, our study shows that the calculated

binding energies and widths of the η-nucleus bound

states strongly depend on the η-nucleus optical po-

tential. In addition we have also illuminated the self-

energy of the baryons and mesons in the intermediate

states, including the η self-energy in a self-consistent

way. We study the s-wave interactions of η mesons in

the nuclear medium and obtain the optical potential

Uη ≈−72 MeV. It should be interesting to test these

predictions with experimental data of η mesic nuclei.

We would like to thank Bao-Xi Sun for the useful

discussions.

Appendix A:

Gowell central differential method

Expanding χ(ri+1) and χ(ri−1) to a Taylor series with

respect to ri, we have

χ(ri+1)= χ(ri)+hχ′(ri)+
h2

2
χ′′(ri)+

h3

6
χ(3)(ri)+ · · · ,

(A1)

χ(ri−1) =χ(ri)−hχ′(ri)+
h2

2
χ′′(ri)−

h3

6
χ(3)(ri)+ · · · ,

(A2)

and then

χ(ri+1)−2χ(ri)+χ(ri−1) =h2χ′′(ri)+
h4

12
χ(4)(ri)+ · · · .

(A3)

If h is small enough we obtain Eq. (A4) from Eq. (A3).

h2χ′′(ri)≈χ(ri+1)−2χ(ri)+χ(ri−1). (A4)

Differentiating Eq. (A4) twice we obtain

h2χ(4)(ri) =χ′′(ri+1)−2χ′′(ri)+χ′′(ri−1). (A5)

Substituting Eq. (A5) into Eq. (A3) leads to

χ(ri+1)−2χ(ri)+χ(ri−1) =

5h2

6
χ′′(ri)+

h2

12
[χ′′(ri+1)+χ′′(ri−1)]+ · · · . (A6)

The iterative result of χ(ri) follows upon substituting

Eq. (7) into Eq. (A6), which produces

χ(ri+1)=

[

2+
5h2

6
T (ri)

]

χ(ri)−

[

1−
h2

12
T (ri−1)

]

χ(ri−1)

1−
h2

12
T (ri+1)

,

(A7)

where T (r) = −(E2
−m2

η) + Πη +
l(l+1)

r2
, ri = ih. The

initial conditions of Eq. (A7) are given by the following:

χ(0) =0, χ(h) = hl+1, T (0)χ(0) =2δl1. (A8)

For large r, r→+∞, the formal result of Eq. (7) can

be written as

χB = f(B)exp(kr), (A9)

where k2 = E2
−m2

η, B is the η binding energy. If B1 is an

energy in the neighborhood of the binding energy, we can

expand the function f(B1) near B into a Taylor series

f(B1) = f(B)+f
′

(B)(B1−B)+ · · · . (A10)

If (B1−B) is small enough, then we can gain f ′(B) as

f ′(B) =
f(B1)−f(B)

B1−B
=

χB1(r)exp(−k1r)−χB(r)exp(−kr)

B1−B
. (A11)

If B is the eigenenergy, f(B) must be vanish, and then

we have

f(B)= f(B1)+f
′

(B1)(B−B1) =0, (A12)

and then

B = B1−
f(B1)

f ′ (B)
. (A13)

According to the method, we solve Eq. (5) by an iterative

procedure until B1 tends to B.
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