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Abstract Using the method based on Random Matrix Theory (RMT), the results for the nearest-neighbor

distributions obtained from the experimental data on 12C-C collisions at 4.2 AGeV/c have been discussed and

compared with the simulated data on 12C-C collisions at 4.2 AGeV/c produced with the aid of the Dubna

Cascade Model. The results show that the correlation of secondary particles decreases with an increasing

number of charged particles Nch. These observed changes in the nearest-neighbor distributions of charged

particles could be associated with the centrality variation of the collisions.
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1 Introduction

Centrality of collisions [1–6] depends upon vari-

ous characteristics of particle production at nuclear-

nuclear collisions. In various experiments the central-

ity is defined as a number of identified protons, pro-

jectile and target fragments, slow particles, all parti-

cles, even as the energy flow of the particles with emis-

sion angles equal to 0◦ or 90◦, etc. These methods en-

able one to establish approximately the centrality us-

ing the number of secondary charged particles in ex-

perimental data and, in particular, from the number

of secondary charged particles simulated with the aid

of the Dubua Cascade Model. Evidently, the absence

of an unambiguous criterion for the centrality may

significantly affect the interpretation of model results

and, therefore, hide a true signal on the onset of a

new phase of the hadronic matter. In this paper [7] we

suggest that tools from RMT [8, 9] might be useful in

illuminating the presence of correlations in the spec-

tral (momentum) distribution of secondary particles

produced in nucleus-nucleus collisions at high energy.

In fact, we have found good agreement between the

results obtained with the aid of the RMT approach

and a standard analysis based on the method of ef-

fective mass spectra and two-pair correlation function

often used in high energy physics [10]. The RMT ap-

proach does not depend on the background of mea-

surements and relies only on fundamental symmetries

preserved in nucleus-nucleus collisions. The purpose

of the present paper is to demonstrate the decrease

in correlation with an increase in the number of

charged particles Nch and to suggest a criterion to the

centrality of collision, using a method based on the

RMT approach.

2 Experimental data

We use the experimental data which were ob-

tained from the 2-m propane bubble chamber of the

Laboratory of High Energy, JINR [11–13]. The 2 m

propane bubble chamber, placed in a magnetic field

of 1.5 T, was exposed to the beams of nuclei at

the Dubna synchrophasotron. All secondary parti-

cles, emitted at a 4π total solid angle, were detected

in the chamber. All negative particles, except for
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those identified as electrons, were considered as π
−-

mesons. The contamination from the misidentified

electrons and the negative strange particles did not

exceed 5% and 1%, respectively. The minimum mo-

mentum for pion registration is about 70 MeV/c in

the lab frame (we consider all kinematic variables in

the lab frame). The protons were selected by a sta-

tistical method applied to all positive particles with

a momentum of |p | >500 MeV/c (slow protons with

|p | 6700 MeV/c were identified by ionization in the

chamber). The maximum particle production was

observed at |p | ≈0.5–0.7 GeV/c. The particle mo-

menta were calculated from the particle trajectories

in a magnetic field, taking into account the ionization

and radiation losses. In particular, the uncertainties

in the momentum value were estimated, taking ac-

count of the effects of multiple Coulomb scattering

and bremsstrahlung radiation. The average uncer-

tainty in the momentum and the angle measurements

varies as 〈∆p/p〉= (11.5±0.3)%,〈∆θ〉 ≈ 0.8◦. In this

experiment, there were 37792 12CC interaction events

at a momentum of 4.2 AGeV/c [12–14].

3 Dubna Cascade Model

The Dubna Cascade Model (DCM) [15–20] is an

example of a microscopic model, which follows the

concept of the intranuclear cascade. In the intranu-

clear cascade models, only the nucleon-nucleon col-

lisions are described. The mean field is taken to be

a constant. Therefore, the particles propagate along

straight trajectories until they collide with each other

or with the potential wall. The cascade of sequential

interactions is tracked in time by the Monte-Carlo

technique. The nucleon-nucleon collision scheme of

the interaction corresponds to a short-range hard-core

potential. In the simplest approach it is assumed [15–

20] that, due to the interaction of a projectile hadron

with one of the target nucleons, the creation of a new

particle takes place. The participating target nucleon

accepts momentum and begins to move in the nu-

cleus. All moving (cascade) particles can interact

with other nuclear nucleons to produce new parti-

cles or suffer elastic rescattering. Therefore, cascade

reproduction of moving particles is assumed. The in-

teractions between cascade particles are omitted as

a rule. The process continues until all moving par-

ticles either leave the nucleus or are absorbed. Due

to the analysis of fast particles and correlations be-

tween slow and fast particles the DCM [21] was rec-

ognized as one of the best models applied to interme-

diate energy physics [22]. In the initialization phase,

the DCM takes into account the diffuseness of the

nuclear potential well. The model is formulated in

a relativistic framework. π-meson and ∆-resonance

production are included. At an advanced stage of

the interaction, particles can be emitted from both

equilibrium and non-equilibrium states.

We used the simulated data that have been ob-

tained from the DCM [23]. We have generated 200000

events of 12C-C collisions at 4.2 AGeV/c in the lab

frame.

4 Methodology

Our method is based on the RMT [7–10], which

was originally introduced to explain the statistical

fluctuations of neutron resonances in compound nu-

clei [24]. The theory assumes that the Hamiltonian

belongs to an ensemble of random matrices that are

consistent with the fundamental symmetries of the

system. Since the nuclear collisions preserve time-

reversal symmetries, the relevant ensemble is the

Gaussian Orthogonal Ensemble (GOE). When the

time-reversal symmetry is broken, one can apply the

Gaussian Unitary Ensemble (GUE). The GOE and

GUE correspond to ensembles of real symmetric ma-

trices and of Hermitian matrices, respectively. Be-

sides these general symmetry considerations, there is

no need in other properties of the system under con-

sideration. Based on this method, we consider the

ordered sequence of energy levels {Ei}, i = 1, · · · ,N

(momentum distribution) to have an average density

of states ρav (E). From this sequence, a new one is

obtained by the unfolding procedure of the original

spectrum {Ei} through the mapping E →x

xi =

∫Ei

0

ρav(E
′)dE′ =

∫xi

0

dx′ = ζ(Ei), i = 1, · · · ,N,

(1)

where, ζ(Ei) is the smoothed function giving the

number of eigenvalues less than or equal to Ei of

the exact eigenvalue distribution N(Ei) (see details in

Ref [10]). The effect of mapping is that the sequence

{xi} has, on average, a constant mean spacing equal

to one (or a constant density), irrespective of the par-

ticular form of the function ζ(Ei). Note that there is

no combinatory involved in a such procedure. what

remain in the sequence are the fluctuations away from

unit mean. Next, one defines the spacing si = xi+1−xi

between two adjacent points. Collecting si in a his-

togram, one obtains the probability density or the

nearest-neighbor spacing distribution (NND). In gen-

eral, this procedure does not involve any uncertainty

or spurious contributions and deals with a direct pro-
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cessing of physical data. If the “events” {xi} are in-

dependent, i.e., correlations in the system under con-

sideration are absent, the form of the histogram must

follow p(s) = exp(−s), which is known as the Poisson

density. The Poisson spectrum corresponds to the

dominance of many crossings between different ener-

gies (momenta). On the other hand, if the levels are

repelled, the density is approximately given by the

Wigner surmise form

p(s) =
π

2
sexp

(

−
π

4
s2

)

for the GOE. In turn, the crossings are usually ob-

served when there is no mixing between states that

are characterized by different good quantum num-

bers, while the anti crossings signal a strong mixing

due to a perturbation brought about by either exter-

nal or internal sources. In other words, any correla-

tions that produce the deviation from the regular pat-

tern (Poisson distribution) produce a collective state

(resonance), or some structural changes in the sys-

tem under consideration would be uniquely identified

from the change in the histogram shape. In order

to reveal structural changes in the momentum distri-

bution, we determine the smooth part ζ(E) using a

polynomial function of the fifth order to interpolate

the exact staircase function (see also Eq. (1)):

ζ(E) =
∑5

k=0
akE

k, (2)

where E = |p| are the momentum values in the given

event. We recall that momenta are ordered in as-

cending series. The parameters ak were optimized

with the aid of the program MINUIT. (MINUIT is a

numerical minimization computer program originally

written in the FORTRAN programming language by

CERN staff physicist Fred James in the 1970s. This

program searches for minima in a user-defined func-

tion with respect to one or more parameters using

several different methods, as specified by the user).

Next, we obtain new spectra {xi} by the unfolding

procedure of the original spectrum {Ei} through the

mapping of E → x by means of the polynomial func-

tion (2) with the optimized coefficients

ak : xi = ζ(Ei), i = 1 · · · ,N.

Having a set of variables {xi}, one is able to deter-

mine the set of spacings {si}. Since all events are

independent, we apply the same procedure for the

other events and obtain the new independent sets of

spacings {si}.

To identify correlations, we divided the set of

spacings {si} into three sets, in correspondence

with three regions of the measured momenta: (a)

0.1 < |p| <1.14 GeV/c (Region .); b) 1.14

< |p | <4.0 GeV/c (Region /); and c) 4.0 <

|p | <7.5 GeV/c (Region 0) (see Fig. 1–4). The re-

gion boundaries were determined with the require-

ment that the shape of the spacing density p(s) does

not change in the region under consideration. There

is no other procedure to define such regions with-

out the method described above, which has proved

to be useful in data processing for various systems

during the RMT analysis [8, 24]. In the present pa-

per we consider the nearest-neighbor spacing momen-

tum distribution for all charged secondary particles,

and the nearest-neighbor spacing momentum distri-

bution for Nch [10–22] from experimental data, and

then compare them with the nearest-neighbor spac-

ing momentum distribution for all charged secondary

particles and the nearest-neighbor spacing momen-

tum distribution for Nch [10–24] from the Dubna Cas-

cade Model to the see changes with the increasing

number of charged particles.

5 Results and discussion

In Figs. 1 and 3 we can see the distributions of

p(s) functions for all charged particles in the three

regions of momentum as a function of the number

of charged particles in the experimental events and

those produced with the aid of the DCM. This anal-

ysis shows that the correlations are absent in Region

. (the Poisson distribution), while one observes the

onset of the strong correlations in Region 0. The ex-

periment and the model results confirm the existance

of some peaks in Region / and their transformation

to the Wigner distribution in Region 0. Evidently,

the experiment and the model results demonstrate

the manifestation of some non-trivial non-kinematic

correlations for the secondary charged particles in Re-

gion / and 0.

To see changes with the increasing number of

charged particles Nch, we divided the events into

three groups: i) the events with Nch=10–14 secondary

charged particles; ii) the events with Nch=15–19 sec-

ondary charged particles; and iii) the events with

Nch=20–22 secondary charged particles (Nch=20–24

for the DCM; see Figs. 2 and 4). The separation was

also done according to the criteria discussed above.
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Fig. 1. The experimental data for all charged secondary particles, the nearest neighbor spacing momentum

distribution (histogram) p(s) for different regions of measured momenta: the left panel corresponds to

0.1< |p|<1.14 GeV/c; the middle panel corresponds to 1.14< |p|<4.0 GeV/c; and the right panel corresponds

to 4.0< |p| <7.5 GeV/c. The Poisson and the Wigner surmise distributions are connected by dashed and

solid lines, respectively.

Fig. 2. The experimental data for all charged secondary particles; the nearest neighbor spacing momentum

distribution (histogram) p(s) for different regions of measured momenta: the first column corresponds to

0.1< |p| <1.14 GeV/c; the second column corresponds to 1.14< |p| <4.0 GeV/c; and the third column

corresponds to 4.0< |p| <7.5 GeV/c. The NND distribution for different multiplicities Nch: the top row

corresponds to Nch=10–14; the middle row corresponds to Nch=15–19; and the bottom row corresponds to

Nch=20–22. The Poisson and the Wigner surmise distributions are connected by dashed and solid lines,

respectively.
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Fig. 3. The DCM data for all charged secondary particles; the nearest neighbor spacing momentum dis-

tribution (histogram) p(s) for different regions of measured momenta: the left panel corresponds to

0.1< |p| <1.14 GeV/c; the middle panel corresponds to 1.14< |p| <4.0 GeV/c; and the right panel cor-

responds to 4.0< |p| <7.5 GeV/c. The Poisson and the Wigner surmise distributions are connected by

dashed and solid lines, respectively.

Fig. 4. The DCM data for all charged secondary particles; nearest neighbor spacing momentum distri-

bution (histogram) p(s) for different regions of measured momenta: the first column corresponds to

0.1< |p| <1.14 GeV/c; the second column corresponds to 1.14< |p| <4.0 GeV/c; and the third column

corresponds to 4.0< |p| <7.5 GeV/c. The NND distribution for different multiplicities Nch: the top row

corresponds to Nch=10–14; the middle row corresponds to Nch=15–19; and the bottom row corresponds to

Nch=20–24. The Poisson and the Wigner surmise distributions are connected by dashed and solid lines,

respectively.
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We have found that strong correlations are

brought about by the proton pairs with zero an-

gle in the momentum distribution interval 4.0<

|p| <7.5 GeV/c. This interpretation becomes even

more convincing with the increase charged particles,

as shown in the right column of Figs. 2 and 4. With

the increase in the multiplicity of secondary charged

particles, the number of stripping protons decreases.

As a result, the correlations, brought by these pro-

ton pairs, decreases as well. For the multiplicity

Nch=20–22 from the experiment and Nch=20–24 from

the DCM, the distribution is neither the Poisson nor

the Wigner surmise. Note, however, that the number

of participants is increased, which can be associated

with the onset of the central collisions.

The correlations are absent in Region . (the

Poisson distribution), while one can observes the fol-

lowing:

1) The behavior of p(s) functions from Regions /

and 0 changes with the increasing number of

charged particles.

2) The structure (deviation from the Poisson dis-

tribution) disappears in Region / with the in-

creasing number of charged particles.

3) The Wigner tape behavior disappears (or be-

come weaker, essentially) in Region 0 with in-

creasing the number of charged particles.

4) So results from Figs. 2 and 4 demonstrate evi-

dently that the observed structure for the p(s)

behavior in Regions / and 0 is related to the

multiplicity. At high multiplicities we observe

that the correlations (which lead to the devia-

tion from the Poisson behaviour of the NND for

| p |>1.15 GeV/c) essentially decrease.

6 Conclusion

In conclusion, using the procedure provided by

the RMT approach, we found that the correlation

decreases with the increasing number of charged par-

ticles Nch produced by the nucleus-nucleus collisions,

using the procedure based on the RMT approach. We

stress that this procedure is based on the direct pro-

cessing of the experimental data and the simulated

data from the Dubna Cascade Model. The transition

from the Poisson distribution to the Wigner surmise

distribution signals on onset of correlations. In turn,

the centrality of nucleus-nucleus collisions is associ-

ated with the absence of correlations.
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