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A viable method for goodness-of-f it test in
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Abstract: A test statistic is proposed to perform the goodness-of-fit test in the unbinned maximum likelihood

fit. Without using a detailed expression of the efficiency function, the test statistic is found to be strongly

correlated with the maximum likelihood function if the efficiency function varies smoothly. We point out that

the correlation coefficient can be estimated by the Monte Carlo technique. With the established method, two

examples are given to illustrate the performance of the test statistic.
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1 Introduction

Supposing the information from an experimental

observation can be characterized by a random vari-

able, x, distributed according to a probability density

function (p.d.f.) f(x|θ) with an unknown parame-

ter θ, the unbinned maximum likelihood method is

widely used to estimate the parameter from the ex-

perimental data. For N independent observations,

x(obs) = (x(obs)
1 ,x(obs)

2 , · · · ,x(obs)
N ),

the log-likelihood function can be constructed as

lnL(x(obs)|θ) =

N
∑

i=1

lnf(x(obs)
i |θ)

−N ln

∫
dxf(x|θ). (1)

The parameter could be estimated to be θ = θ̂(obs),

with θ̂(obs) maximizing the value of the log-likelihood

function.

Once an estimation of the parameter is obtained,

it is essential to perform a goodness-of-fit test to ver-

ify how well the p.d.f. with the obtained parameter

could describe the observed data. For binned data,

one can obtain a measure of the goodness-of-fit by

using the χ2 method [1, 2], after the maximum like-

lihood fitting is performed. However, the χ2 method

can’t be used in this unbinned case. One possibility,

among many tests suggested in the literature, is to

use the maximum log-likelihood,

Ê0 ≡ lnL(x|θ̂), (2)

as a goodness-of-fit statistic [3], where θ̂ maximizes

the log-likelihood function,

∂ lnL(x|θ)
∂θ

∣

∣

∣

∣

θ=θ̂

= 0, (3)

and the observations here are known to be distributed

according to the joint p.d.f.,

L(x|θ̂(obs)) =

N
∏

i=1

f(xi|θ̂(obs))∫
dxf(x|θ̂(obs))

. (4)

With the condition given in Eq. (3), the parameter

that maximizes the likelihood function is implicitly a

function of the observations

θ̂ = θ̂(x). (5)
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The p.d.f. of Ê0, with the aid of Dirac’s δ-function,

can be formally expressed as

F (Ê0) =

∫
dxδ[Ê0− lnL(x|θ̂(x))]L(x|θ̂(obs)). (6)

Such a distribution in practice can be obtained by

Monte Carlo simulations. F (Ê0) is then used to de-

fine a P -value to characterize the goodness-of-fit test,

P -value=

∫Ê
(obs)
0

−∞

dÊ0F (Ê0), (7)

where

Ê(obs)
0 = lnL(x(obs)|θ̂(obs)). (8)

In particle physics experiments, an experimental

observation usually comes from one single event col-

lected by a detector, and N such events will con-

tribute a set of N independent observations. Gen-

erally, the p.d.f. can be expressed to be

f(x|θ) =

∫
dx′R(x,x′)ft(x

′|θ), (9)

where ft(x
′|θ) denoting the p.d.f. usually comes from

a theoretical prediction, and R(x,x′) is a function

that represents the detector response. For a detec-

tor with perfect resolution on x,

R(x,x′) = ε(x)δ(x−x′) (10)

implies

f(x|θ) = ε(x)ft(x|θ), (11)

where ε(x) can be understood as the acceptance func-

tion of the detector. The log-likelihood function in

Eq. (2) is simplified to be

E0(x
(obs)|θ) =E1(x

(obs))+E2(x
(obs)|θ),

E1(x
(obs)) =

N
∑

i=1

lnε(x(obs)
i ),

E2(x
(obs)|θ) =

N
∑

i=1

lnft(x
(obs)
i |θ)

+N ln

∫
dxε(x)ft(x|θ).

(12)

Though the detector response is supposed to be

clearly known (by Monte Carlo simulations, for ex-

ample), the detailed expression of ε(x) is in practice

very hard to obtain for x being multi-dimensional.

For the E1 term in Eq. (12) independent of the pa-

rameter θ, instead of maximizing E0, the parameter

can be estimated actually by maximizing E2. Doing

it this way, the detailed expression of ε(x) is not nec-

essary for the parameter estimation. However, with-

out E1, which needs detailed information about ε(x),

one cannot define Ê(obs)
0 according to Eq. (8). It is

not possible to perform the goodness-of-fit test in a

normal way.

The difficulty presented here is a well-known prob-

lem for the goodness-of-fit test of the unbinned max-

imum likelihood estimation. There is not a good so-

lution so far for this problem. However, for most

cases in practice, one may expect that the ε(x) varies

slowly in the allowed phase space of x. The E1 term

in Eq. (12) is then nearly constant, which suggests

that E2 should have strong correlation with E0. The

goodness-of-fit test in this case can be performed by

using

Ê2 = E2(x|θ̂), (13)

as a test statistic, where θ̂ maximizes E2 for a given

set of observations. Similar to using Ê0, once the

p.d.f of Ê2, F2(Ê2) is obtained, the P -value can then

be defined to be

P -value =

∫Ê
(obs)
2

−∞

dÊ2F2(Ê2), (14)

where

Ê(obs)
2 = E2(x

(obs)|θ̂(obs)).

The quality of such a test, of course, depends on the

statistical correlation between Ê2 and Ê0. For a 100%

correlation, one expects the test to be be as good as

using Ê0. Otherwise, the statistical power of the test

will be weakened.

In this article, the properties of the goodness-of-

fit test based on Ê2 will be explored. The article

is organized as follows. After this introduction, the

correlation between Ê0 and Ê2 is examined in Sec-

tion 2. To evaluate the test, a numerical example is

discussed in Section 3 and the application in an ex-

ample of multivariate analysis is given in Section 4.

The last section is devoted to some discussions and a

brief conclusion.

2 Correlations between Ê0 and Ê2

Since the parameter θ̂ that maximizes E2 also

maximizes E0, and E1 is independent of θ, the re-

lation

Ê0

(

x|θ̂(x)
)

−Ê2

(

x|θ̂(x)
)

= E1(x) (15)

holds for a given set of N independent observations.

To test the goodness-of-fit, x is set to be distributed

according to the joint p.d.f given in Eq. (4). Let σ2
0 ,

σ2
2 and σ2

1 denote the variances for Ê0, Ê2 and E1,

respectively, one has

σ2
0 = σ2

1 +σ2
2 +2σ1σ2 ·ρ′, (16)
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where ρ′ is the correlation coefficient between Ê1 and

Ê2. It is easy to express the correlation coefficient

between Ê0 and Ê2 as

ρ≡ ρ[Ê0, Ê2] =
σ2 +σ1 ·ρ′

√

σ2
1 +σ2

2 +2σ1σ2 ·ρ′

. (17)

By assuming ε(x) varying slower than ft(x|θ) in the

phase space of x, i.e., t≡σ2/σ1 � 1 > ρ′, ρ in Eq. (17)

can be expressed as

ρ =
t+ρ′

√
1+ t2 +2tρ′

≈ t√
1+ t2

. (18)

So the correlation between Ê0 and Ê2 is governed

by t. The statistical power of the goodness-of-fit test

based on Ê2 should be similar to that of Ê0 when

t� 1.

To perform the goodness-of-fit test based on Ê2,

σ1 is an important ingredient. An alternative ap-

proach is to take the Taylor series of E1, i.e.,

E1 =

N
∑

i=1

[

∞
∑

j=1

(−1)j+1 1

jε̄
(εi− ε̄)j

]

, (19)

where ε̄ is a constant denoting the average efficiency

of ε(x) in phase space of x, i.e.,

ε̄ =

∫
ε(x)f(x|θ)dx (20)

and εi denotes ε(xi). Since the efficienc εi ∈ [0,1], the

Taylor series is convergent. It is reasonable to drop

the higher order terms (j > 2) in Eq. (19). Thus, E1

reads as

E1 ≈
(

1

ε̄
+1

) N
∑

i=1

εi−
1

2ε̄

N
∑

i=1

ε2
i −N

(

1+
ε̄

2

)

. (21)

The variance of E1 can be expressed as

σ2
1 =

(

1

ε̄
+1

)2

V

[

N
∑

i=1

εi

]

+

(

1

2ε̄

)2

V

[

N
∑

i=1

ε2
i

]

−1

ε̄

(

1

ε̄
+1

)

√

√

√

√V

[

N
∑

i=1

εi

]

·V
[

N
∑

i=1

ε2
i

]

, (22)

where

V

[

N
∑

i=1

εi

]

= E

[

N
∑

i=1

ε2
i

]

− 1

N

(

E

[

N
∑

i=1

εi

])2

, (23)

and

V

[

N
∑

i=1

ε2
i

]

= E

[

N
∑

i=1

ε4
i

]

− 1

N

(

E

[

N
∑

i=1

ε2
i

])2

. (24)

With

ε(n) ≡
∫
(ε(x))nft(x|θ)dx (25)

denoting the nth-order moment of ε(x) under ft(x|θ),
it is easy to obtain the expectation of

∑N

i=1
εj

i (j =

1,2, · · · ) under f(x|θ)

E

[

N
∑

i=1

εj
i

]

=
Nε(j+1)

ε(1)
(26)

by the definition.

Though the detailed expression of ε(x) is un-

known, some useful information could be extracted

from the Monte Carlo events generated. In fact, the

moments of ε(x) can be obtained too. For this pur-

pose, a full detector simulation and the event selection

procedure can be performed on the events generated

according to ft(x|θ). The acceptance efficiency is ε(1).

If the process could be done n times, the nth-order

moment of ε(x) under ft(x|θ) , ε(n), can be obtained.

However, performing the process n times is gen-

erally complicated in practice. An iterative compu-

tation method can be used to calculate ε(j) (j > 2) if

ε(1) and ε(2) are known. The first order moment, ε(1),

is the acceptance efficiency, which is easy to obtain.

If the process mentioned above is implemented again,

the second order moment, ε(2), is given.

In the large sample limit, Ê1 under ft(x|θ) approx-

imatively approaches a Gaussian distribution with

mean

µ′ ≡Nε(1), (27)

and variance

σ′2 ≡N
(

ε(2)−
(

ε(1)
)2
)

. (28)

Then one can obtain

Nε(n) = Γ (n)−
∑

n1+n2+···+nN =n

n!
∏

i
ni!

∏

i

ε(ni), (29)

where ni is the exponent of εi, and ni < n. Γ (n) is the

nth-order moment of Gaussian distribution N(µ′,σ′).

With ε(1) and ε(2) obtained by Monte Carlo, the

expectation values of
∑N

i=1 εj
i are straightforward and

the variance of Ê1, σ2
1 , can be calculated too.

3 An illustrative example

We consider a simple univariate case in experi-

ment. In the decay e+e− →µ+µ−, the angular distri-

bution of µ+ follows

f(cosθ;α) = 1+αcos2 θ, (30)

where θ is the angle between e+ and µ+ and α = 1.0

predicted by theory.

The efficiency of the detector, ε(cosθ), is assumed
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to be described by a quadratic function,

ε(cosθ) =−λcos2 θ+λ′, (31)

where λ,λ′ are smoothing parameters and 0 < λ <

λ′ < 1. The efficiency function ε(cosθ) implies the

detector preferring events with |cosθ| close to zero

and the maximum efficiency is λ′ in the phase space.

Monte Carlo simulation is used to evaluate the

test proposed in Section 2. For the purpose, events

are generated according to Eq. (30), and Eq. (31) is

used to perform the selection process on the events

generated. The input values of the parameters are

fixed as

α = 1.0,

λ = 0.01, 0.04, 0.07, 0.10, 0.13, 0.16,

λ′ = 0.3.

(32)

5000 experiments are simulated by Monte Carlo

and for each experiment N = 10000 events are gener-

ated. Those events are used to estimate the param-

eter α with maximum likelihood estimators E0 and

E2. Maximum values of the log-likelihood function,

Ê0 and Ê2 are recorded.

ε(1) and ε(2) can be obtained in an experiment

simulated by Monte Carlo. Then the variance of E1,

σ2
1 , can be estimated using the method proposed in

Section 2. On the other hand, the distribution of E1

simulated from the 5000 Monte Carlo experiments

can also give a “true” σ2
1 . Comparing σ1 estimated

to σ1 simulated from the 5000 Monte Carlo experi-

ments for different smoothing parameter λ is shown

in Fig. 1. It is obvious that the estimation of σ2
1 is

good. Besides, σ2
2 = 22 can also be obtained from the

distribution of Ê2 simulated by the 5000 Monte Carlo

experiments.

Fig. 1. Comparison of σ1 estimated with the

“true” σ1 for different smoothing parameter

λ.

The distributions of Ê0, E1 and Ê2 for λ = 0.04 are

shown in Fig. 2, and the scatter-plots of Ê2 versus Ê0

for λ = 0.04 are shown in Fig. 3. Here, t = 21.9/4.3 = 5

and ρ = 0.98. It is obvious that Ê2 can be taken as a

goodness-of-fit test.

Fig. 2. The distributions of Ê0, E1 and Ê2 sim-

ulated by Monte Carlo.

Fig. 3. The scatter-plots of Ê2 versus Ê0.

4 Application in multivariate condi-

tion

We consider a complicated multivariate case in ex-

periment. For the cascade decay e+e− → J/ψ, J/ψ→
ΛΛ̄, Λ→ pπ−, Λ̄→ p̄π−, the full angular distribution

reads [4]

dσ

dΩdΩ1dΩ2

∝F(Θ,Φ;θ1,φ1;θ2,φ2)

≡
∑

Mλpλp̄

|βλp |2|β̄λp̄ |2
∑

λ1λ2λ′

1λ′

2

αλ1λ2
α∗

λ′

1λ′

2
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× ei[(λ1−λ′

1)φ1+(λ2−λ′

2)φ2]d1
Mλ1−λ2

(Θ)d1
Mλ′

1−λ′

2
(Θ)

× d
1
2
λ1λp

(θ1)d
1
2

λ′

1λp
(θ1)d

1
2
λ2λp̄

(θ2)d
1
2

λ′

2λp̄
(θ2), (33)

where M , λ1, λ2, λp, λp̄ denote respectively the he-

licities of J/ψ, Λ, Λ̄, p and p̄. Θ, Φ are the emission

angles of Λ versus e+ beam direction ẑ. θ1,φ1(θ2,φ2),

measured in Λ(Λ̄) rest frame, are polar and azimuth

angles of p(p̄) versus Λ(Λ̄) momentum direction. The

explicit expression of dJ
mm′(β) can be found, for ex-

ample, in Ref. [5].

αλ1λ2
and βλp , β̄λp̄ are complex numbers. With

CPT and C invariance in the decay process, the free

parameter αλ1λ2
can be re-parameterized as

α 1
2

1
2

= ei η
2 , α

−
1
2
−

1
2

= e−i η
2 ,

α 1
2
−

1
2

= α
−

1
2

1
2

=

√

2(1+α)

1−α
,

(34)

where η, α are real, and α = 0.65±0.11 (stat) ± 0.03

(syst) has been obtained by experimental measure-

ment [6]. βλp and β̄λp̄ can be re-parameterized as

β 1
2

=
√

1+β, β
−

1
2

=
√

1−β,

β̄ 1
2

=

√

1− β̄, β̄
−

1
2

=

√

1+ β̄,

(35)

with β, β̄ being real and β ≈ β̄ = 0.642±0.013 [5].

The efficiency of the detector for a track with mo-

mentum p and polar angle θ in the laboratory frame,

ε(p,cosθ), is assumed to be described by a quadratic

function,

ε(p,cosθ) =−(ε0−ε1 · |p|)cos2 θ+ε2, (36)

where ε0, ε1, ε2 are smoothing parameters. There are

four particles in the final states of the decay process.

Thus the efficiency of the detector for the decay pro-

cess is

ε = ε(pp,cosθp)ε(pp̄,cosθp̄)

×ε(p
π
+ ,cosθ

π
+)ε(p

π
− ,cosθ

π
−), (37)

where pp,p̄,π+,π− and θp,p̄,π+,π− denote respectively

the momenta and polar angles of p, p̄,π+,π− in the

laboratory frame, respectively.

Events are generated according to Eq. (33), and

Eq. (37) is used to perform the selection process on

events generated. The input values of the parameters

are fixed as

α = 0.65, β = β̄ = 0.64, η = 0.0,

ε0 = 0.04, ε1 = 0.04, ε2 = 0.8.
(38)

1000 experiments are simulated by Monte Carlo and

for each experiment, N = 10000 events are generated.

Those events are used to estimate the parameter η

with maximum likelihood estimators E0 and E2. The

scatter-plot of Ê2 versus Ê0 is shown in Fig. 4. Here,

t = 34/1.2 = 28 and ρ = 1.0. It is obvious that Ê2 can

be taken as a goodness-of-fit test.

Fig. 4. The scatter-plot of Ê2 versus Ê0.

5 Discussions and conclusion

A test statistic is proposed to perform the

goodness-of-fit test in the unbinned maximum likeli-

hood fit. Without an explicit expression of the ef-

ficiency function, the test statistic is found to be

strongly correlated with the maximum likelihood

function if we can assume the efficiency of detector

varying slower than pdf in the phase space. We point

out that the correlation coefficient can be estimated

by the Monte Carlo technique.
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