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A new parametric equation of state and quark stars *
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Abstract: It is still a matter of debate to understand the equation of state of cold matter with supra-nuclear

density in compact stars because of unknown non-perturbative strong interaction between quarks. Nevertheless,

it is speculated from an astrophysical view point that quark clusters could form in cold quark matter due to

strong coupling at realistic baryon densities. Although it is hard to calculate this conjectured matter from first

principles, one can expect that the inter-cluster interaction will share some general features with the nucleon-

nucleon interaction successfully depicted by various models. We adopt a two-Gaussian component soft-core

potential with these general features and show that quark clusters can form stable simple cubic crystal structure

if we assume that the wave function of quark clusters have a Gaussian form. With this parametrization, the

Tolman-Oppenheimer-Volkoff equation is solved with reasonably constrained parameter space to give mass-

radius relations of crystalline solid quark stars. With baryon number densities truncated at 2n0 at surface and

the range of the interaction fixed at 2 fm we can reproduce similar mass-radius relations to that obtained with

bag model equations of state. The maximum mass ranges from ∼ 0.5M� to & 3M�. The recently measured

high pulsar mass (& 2M�) is then used to constrain the parameters of this simple interaction potential.
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1 Introduction

An understanding of cold quark matter is both

one of the most challenging problems in particle

physics and a prerequisite to understand the true na-

ture of pulsars and pulsar-like objects. However, due

to both the non-perturbative nature of the strong in-

teraction at low energy and the complexity presented

by the quantum many-body problem, it is almost im-

possible to understand such states theoretically from

first principles.

Over the decades, various approaches to bypass

these difficulties have been developed, both perturba-

tively, such as color super-conductivity [1], and non-

perturbatively, such as lattice QCD and QCD-based

effective models. On the other hand, it has been con-

jectured [2–4] that quark matter could be in a solid

state at extremely low temperature present in the pul-

sar interior. This possibility could combine naturally

with several previous works, suggesting the possibil-

ity that deconfined quark matter might contain quark

clusters of 3N valence quarks [5–7] into a reasonable

conjecture that quark clusters could form crystal lat-

tices.

Because of the difficulty in obtaining details of the

interaction between quark clusters, it is interesting to

apply simple phenomenological models. If we can use

astronomical observations to constrain parameters in

such models, we may be be able to gain some insights

into the properties of low-energy QCD or rule out

such forms of cold quark matter within pulsars.

In several previous works [8, 9], different models

have been tried to investigate the possible equation

of state of solid quark matter and have provided the

possibility of explaining stiffness in the equation of

state required by observed massive pulsars [10]. In

Ref. [9], the Lennard-Jones potential, which was in-

troduced to model the interaction between inert gas

molecules [11], is used as the potential between quark

clusters. The Lennard-Jones potential shares some
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common properties with nuclear forces, such as short-

range repulsion and longer range attraction (c.f. [12]).

In this article, we adopt a more realistic parametriza-

tion that is very similar to various models depicting

hyperon-hyperon potential. It has been shown that

the interaction between two H-dibaryons – a hypo-

thetical particle with 6 valence quarks [13] may also

share this general feature [14].

This article is arranged as follows. The model

of inter-cluster potential is presented in Section 2.

Parameter space used for calculation is discussed in

Section 3. Section 4 shows the result of calculation.

The conclusion and some discussions are presented in

Section 5.

2 Inter-cluster potential

As in Ref. [9], we consider quark clusters with 3N

valence quarks with N = 1,6 and a simple cubic lat-

tice structure is adopted for simplicity. In the context

of strange quark matter, these are particles with the

same valence quark composition as hyperons and the

hypothetical ‘quark-alpha’ [15]. By extension of the

Lennard-Jones potential, we adopt the following non-

relativistic interaction potential between two quark

clusters located on two lattice sites,

v(r) =V1e
−
(

r

r1

)

2

−V2e
−
(

r

r2

)

2

, (1)

where possible spin-dependent terms are omitted for

simplicity. As mentioned above, with the condition

V1 >V2, r1 <r2, this potential shares the general fea-

ture of various successful phenomenological potentials

of nuclear interactions: soft-core repulsion at short

range and attraction at longer range.

It turned out in later analysis that the maximum

masses and the mass-radius curves are not sensitive

to the value of r2. Therefore we fix r2 to 2 fm, which

is a typical range of nuclear force.

For simplicity, we adopt a Gaussian wave packet

with width w

ψ
r0,w(r) =

1

π
3/4w3/2

e−
|r−r0|2

2w
2 , (2)

as the wave function of a quark cluster. In Ref. [9],

it is assumed that the potential well created by sur-

rounding clusters with Lennard-Jones interaction is

deep enough to trap quark clusters at lattice sites.

To ensure that the soft-core potential can also trap

quark clusters, we adopt a variational method, i.e.

determining the value of w by minimizing the total

energy of a cluster. The latter is calculated by sum-

ming the kinetic energy of the wave packet and the

potential energy of nearby clusters. The result shows

that with the range of parameters considered in this

work, the widths of wave packets are much smaller

than the inter-cluster distance. Therefore it makes

sense to view the system as consisting of quark clus-

ters trapped at lattice sites. With this small width,

the overlap between adjacent wave packets is also neg-

ligible. Thus it is reasonable to omit the difference

between fermionic and bosonic quark clusters.

To calculate the total contribution to the potential

energy, a sum is taken over a cube of 213 lattices cen-

tered on the quark cluster under consideration. The

size of the cube is enough since the cluster number

density in this work will not exceed ∼ 20n0. Hence,

the the total contribution to the potential energy per

cluster is

1

2
V (n)

≡

1

2

(

10
∑

k1=−10

10
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10
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)′

ṽ
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w;

√

k2
1 +k2

2 +k2
3

n1/3

)

,

(3)

where the prime means that the sum omits k1 = k2 =

k3 = 0, and

ṽ(w;r) =

∫
d3

r
′ψ∗

0,w(r′)v(r′)ψr,w(r′), (4)

is the expectation value of potential operator v(r).

In addition to potential energy, kinetic energy and

mass, it is also necessary to include lattice vibration

energy in the total energy density. This is considered

in the Debye’s approximation [16], where the phonons

are viewed as a free boson gas with linear dispersion

relations ω‖ = c‖k,ω⊥ = c⊥k (where c‖ and c⊥ are

sound velocity for longitudinal and transverse waves)

and a cut-off frequency ωD. It is convenient to define

1

c3s
=

1

3

(

1

c3‖
+

2

c3⊥

)

, (5)

and we have

g(ω) =

∫
d3k

(2π)3
(δ(ω−c‖k)+2δ(ω−c⊥k))

=
3

2π
2c3s

ω2. (6)

The Debye cut-off frequency ωD = (6π
2n)1/3cs is de-

termined by matching the total number of degrees of

freedom 3N , where N is the number of lattices,

V

∫ωD

0

g(ω)dω= 3N.

Each vibration mode has a zero point energy
1

2
~ω
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and the total phonon zero point energy is

U0 =

∫ωD

0

3
1

2
~ωg(ω)dω=

9

8
(6π

2)1/3
~csn

4/3. (7)

Following [9], we take sound velocity to be one third

of the speed of light cs = c/3 and note that this value

has very limited influence on the final result. There-

fore the total energy density at zero temperature can

be written as

ε=
n

2
V (n,w)+nm+

3

4mw2
+

9

8
(6π

2)1/3
~csn

4/3, (8)

At zero temperature, the pressure can be derived

as

P =
n2

2

∂V
∂n

+
n2

2

∂V

∂w

dw

dn
−

3

2mw3

dw

dn

+
3

8
(6π

2)1/3
~csn

4/3. (9)

With the energy density and pressure, one can es-

tablish the equation of state and solve the Tolman-

Oppenheimer-Volkoff (TOV) equations to get the

mass-radius relations. In practice, it is more conve-

nient to skip the numerical determination of equation

of state P (ρ) and instead write the TOV equation in

terms of n(r) and M(r),

dn

dr
= −

G

r2−2GMr
(P (n)

+ε(n))(M+4πr3P (n))

(

dP

dn

)−1

, (10)

dM

dr
= 4πr2ε(n), (11)

M(0) = 0, n(0) =nc, (12)

where nc is the central baryon number density. Be-

cause quark matter is usually expected to be self-

bound at zero pressure (for instance under the bag

model equation of state), it is reasonable to simply

adopt a truncation baryon number density nsurf at

the surface. In this work, we adopt nsurf = 2n0, where

n0 is the baryon number density of normal nuclear

matter.

3 Parameter space and results

As stated above, r2 is fixed to 2 fm. There-

fore we have 4 free parameters: quark cluster mass

m; the height of the two Gaussian components in the

Fig. 1. The maximum mass in units of a solar mass of a solid quark star. upper left: m =1 GeV, V2 = 100 MeV;

upper right: m = 1 GeV, V2 = 50MeV; lower left: m = 6 GeV, V2 = 100 MeV; lower right: m = 6 GeV,

V2 = 50 MeV. The boundary of contour plots is moved a little higher right than V1r
3
1 = V2r

3
2 to avoid

parameters from leading to large error in numerical calculations. It is evident that the maximum mass

greater than 2M� is allowed in large parameter space.



No. 7 NA Xue-Sen et al: A new parametric equation of state and quark stars 619

potential V1, V2; and the range of the repulsive core

r1. It is appropriate to expect that the depth of the

attractive part of the potential might be of the same

order of magnitude as the typical potential between

two nucleons in nuclear matter. Therefore we fix V2

at 50 MeV and 100 MeV, respectively. On the other

hand, we fix the value of m to 1 GeV and 6 GeV for

3-quark clusters and the aforementioned hypothetical

‘quark-alpha’. Here the mass of the 3-quark cluster

is taken from the mass of the Λ hyperon (1115 MeV).

Similarly, the mass of the ‘quark alpha’ (an 18-quark

cluster) is assumed to be approximately 6mΛ. It is

worth noting that we made the above choice because

in the present work the quark clusters are assumed to

be composed of constituent quarks with small mass

corrections from potential energy. See Sec. 4 for fur-

ther discussions. Thus we are left with two free pa-

rameters: V1 and r1. We adopt a condition,

V1r
3
1 >V2r

3
2 , (13)

that ensures that the potential energy is always pos-

itive (i.e., repulsive) when the density is very high.

With the above settings of parameter space, we drew

4 contour plots of maximum mass calculated for 4

different sets of (m, V2) values, which are shown in

Fig. 1.

Typical mass-radius relation curves of these set-

tings with maximum mass exceeding 1.9M� are also

shown together with corresponding equations of state

(Fig. 2, Fig. 3). Stellar mass and radius as functions

of central baryon number density nc are shown in

Figs. 4, 5. From Fig. 1, we can see that for our simple

soft-core parametrization, maximum mass can range

roughly from below 1M� to about ∼ 3M� for solid

quark stars with a 3-quark cluster forming a crys-

tal lattice and from below 0.5M� to about 2.1M�

for solid quark stars made up of ‘quark-alpha’ parti-

cles. On the other hand, typical mass-radius relations

shown in Fig. 3 are very similar to those calculated

within the bag model equations of state (shown as

gray curves in Fig. 3, adopted from model SS1, SS2 in

Ref. [17]) and M-R curves calculated in Ref. [9]. This

shows that at least for some region of parameter space

our simple parametrization can also produce heavy

maximum mass supported by the observed value of

2M�. Inversely, with current observation we can al-

ready restrict parameters in this very simple model

with only 4 parameters. For instance, to get a max-

imum mass larger than 1.9M� for m = 1 GeV and

V1 < 6 GeV, we have to restrict r1 to below 0.75 fm

when V2 = 100 MeV and restrict r1 . 0.6 fm and for

m= 6 GeV it requires r1 . 1 fm and V1 & 8 GeV.

Fig. 2. The equation of state with typical pa-

rameters giving large maximum masses. solid:

m = 1 GeV, V1 = 3.2 GeV, V2 = 100 MeV,

r1 = 0.68 fm; dashed: m = 1 GeV, V1 =

5 GeV, V2 = 50 MeV, r1 = 0.54 fm; dotted:

m = 6 GeV, V1 = 9 GeV, V2 = 100 MeV,

r1 = 0.95 fm; The gray solid and dashed: bag

model equations of state SS1 and SS2 adopted

from Ref. [17].

Fig. 3. The mass-radius relation curves for typ-

ical parameters giving large maximum masses.

The parameter sets for curves are the same as

in Fig. 2. Gray curves are calculated with the

bag model equation of state.

Fig. 4. The stellar mass as a function of central

baryon number density nc for typical param-

eters. n0 = 0.16 fm−3 is the baryon number

density at nuclear saturation. The parame-

ter sets for curves are the same as in Fig. 2.

Gray curves are calculated with the bag model

equation of state.
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Fig. 5. The stellar radius as a function of cen-

tral baryon number density nc for typical pa-

rameters. The parameter sets for curves are

the same as in Fig. 2. Gray curves are calcu-

lated with the bag model equation of state.

4 Discussion

4.1 General discussion

In cold quark matter at baryon number densi-

ties realistic for compact stars, the interaction be-

tween quarks could be strong enough that instead

of condensing in momentum space to form a color-

superconductive phase, it is possible that the dressed

quarks undergo condensation in position space to

form quark clusters. As is stated in Ref. [9], if the

potential well formed by neighboring clusters is deep

enough to trap each cluster, cold quark matter could

form a crystal solid at low temperature.

In this work, we discussed the simple-cubic lat-

tice structure formed by 3- and 18-quark clusters us-

ing a simple two-Gaussian-component parametriza-

tion of soft-core potential to simulate the interac-

tion between quark clusters. This parametrization

shares the basic properties of nucleon-nucleon inter-

action mediated by meson exchange – short range

repulsion, medium and long range attraction and a

finite range. These properties are also shared by the

Lennard-Jones potential adopted in Ref. [9]. How-

ever, unlike the Lennard-Jones potential with r−12

pole at a short distance, a soft-core potential adopted

in this work can be treated by non-relativistic quan-

tum mechanics using Gaussian wave packets. By min-

imizing the total energy, we find that at realistic den-

sities this soft-core potential can lead to a stable lat-

tice structure. It is entirely possible that other unit

cell structures (e.g. body-centered cubic) are more

stable, but we expect that the difference is quantita-

tive instead of qualitative.

Although maximum mass cannot be easily tuned

to ∼ 6M� as in Ref. [9] due to the soft-core nature of

the interaction, our parametrization can still provide

a stable lattice crystal structure with maximum mass

exceeding 2M�, which is in accordance with the ob-

served maximum mass [10]. Inversely, the observed

maximum mass can be used to put constraints on pa-

rameters of this simple model that will possibly give

some insights into the form of interaction between

quark clusters if such a phase exists.

4.2 Difference between nuclear matter, ordi-

nary quark matter and quark-clustering

matter

Another issue needing to be clarified is the dif-

ference between this quark-clustering matter and or-

dinary nuclear matter. Concerning the stellar struc-

ture, the biggest difference comes from the existence

of a crust. Whether or not a crust is present can

severely affect the radius of the quark star with very

low mass. As is commonly accepted [18], a neutron

star must have a crust where nuclear matter will be

substituted by matter with ordinary nuclei while for

a quark star it is not necessary to have such restric-

tion. It can have a bare surface, as is assumed in our

work with a truncation density, especially if Witten’s

conjecture [19] is correct, i.e. strange quark matter is

at absolute ground state.

On the other hand, we consider the possibility

that the quark-clustering phase arises from strong

quark-quark interaction. This should be different

from confinement or mixed phase of confining and

deconfined matter.

At a first look, it would be tempting to extrapo-

late this model to nuclear saturation density and use

the binding energy and bulk modulus to constrain the

model parameters in order to improve the accuracy

of the prediction. Unfortunately, it would be inap-

propriate to do this, for three reasons:

1) The quark-clustering phase considered in this

article could be in deconfined phase while nuclear

matter is a confined phase.

2) The quark-clustering phase can have large

strangeness per baryon while saturated nuclear mat-

ter does not have such a property.

3) Although the interaction between quark-

clusters and that between nucleons are expected to be

similar, the major contribution to pressure is differ-

ent. As is mentioned in Section 3, the overlap between

Gaussian wave packets of adjacent quark-clusters is

small, so the main pressure contribution comes from

the repulsive core of the inter-cluster potential, which

is very different from saturated nuclear matter.

It is also worth mentioning that despite great simi-

larity between the mass-radius relation obtained with
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the bag model equation of state and those calculated

here, the underlying picture is drastically different.

In the bag model, a quark star is degenerate Fermi

gas of free quarks sustained by vacuum energy and as-

sociated negative pressure. In this work and Ref. [9],

pressure is mainly provided by the repulsive core of

the inter-cluster potential instead of mere degenerate

pressure.

The quark-clustering matter is also different from

ordinary quark matter in chiral symmetry. In the

quark-clustering phase, we considered constituent

quarks forming clusters of 3 and 18 quarks. In the

quark clustering phase, it was conjectured [3, 4] that

clusters are formed by dressed quarks. In the present

work, the masses of these clusters are chosen simply

as the sum of constituent quark masses. The mass

of clusters should obviously receive corrections from

interaction between constituent quarks, but it is as-

sumed in this work that such corrections are small

and will not have a qualitative influence on the re-

sult. On the other hand, it was proposed (e.g. in

the quark-mass-density-dependent model [20]) that

constituent quark masses and current quark masses

can be connected by introducing the dependence of

quark mass on chemical potential. The influence of

this dependence is partly considered in Ref. [21]. It

is reasonable to take this dependence into account as

part of our future work.

We wish to thank the Pulsar Group at Peking Uni-
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