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Nilsson mean-field plus the extended pairing

model description of rare earth nuclei *
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Abstract: The Nilsson mean-field plus the extended pairing model for well-deformed nuclei is applied to

some representative rare earth examples. The binding energies, some low-lying pair-excited states and even-

odd mass differences of Er, Yb and Hf isotopes are calculated systematically within the proton frozen-pair

excitation limit. A comparison with experimental data for these nuclei shows that the results of the extended

pairing model are better than those for the standard pairing model with the BCS approximation and the

nearest-orbit pairing model.
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1 Introduction

Besides the quadrupole-quadrupole interaction,

pairing is an important residual interaction in nuclei.

The Bardeen-Cooper-Schrieffer (BCS) and Hartree-

Fock-Bogolyubov (HFB) methods [1, 2] for finding

approximate solutions are well known. However, both

the BCS and HFB approximations suffer from seri-

ous drawbacks. The nonconservation of the number

of particles is one that can lead to serious problems,

such as spurious states, nonorthogonal solutions, etc.

Another problem with approximate treatments of the

pairing Hamiltonian is related to the fact that both

the BCS and the HFB approximations break down for

an important class of physical situations. The often

proposed particle-number projection remedy compli-

cates the algorithms considerably and usually without

yielding a better description of higher-lying excited

states that are a natural part of the spectrum of the

pairing Hamiltonian [3–5].

The Nilsson mean-field plus the extended pairing

model was introduced to address this challenge and

provide a better description of well-deformed nuclei

[6]. The advantage of the model is that it is exactly

solvable and that the number of valence pairs is a

conserved quantity. In addition, as shown in our re-

cent study [7], the extended pairing model is equiv-

alent to the conventional standard pairing Hamilto-

nian within the first step of the approximation, which

displays the pair structures of low-lying states of the

standard pairing model. Moreover, the nearest or-

bit pairing model [8], which is a simplified version of

the Gaussian type of pairing interaction suitable for

describing well-deformed nuclei [5], was also simply

solvable with pair-number conserved solutions.

In summary, in this paper we report on an appli-

cation of the extended pairing model to nuclei in the

rare earth region, with a comparison of the results

with those from an application of the standard pair-

ing model and the nearest orbit pairing model. The

comparison affirms the applicability of the extended

pairing model in this region of deformed nuclei.

2 The extended pairing model

The standard pairing Hamiltonian for well-defor-
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med nuclei is given by

Ĥ =

p
∑

j=1

εjnj −G

p
∑

i,j=1

a+
i aj , (1)

where p is the total number of Nilsson levels con-

sidered, G >0 is the overall pairing strength, εj is the

single-particle energies taken from the Nilsson model,

nj = c†j↑cj↑+c†j↓cj↓ is the fermion number operator for

the j-th Nilsson level and a+
i = c†i↑c

†

i↓ [ai = (a+
i )† =

ci↓ci↑] are pair creation [annihilation] operators. The

up and down arrows in these expressions refer to time-

reversed states.

Since it is not possible to diagonalize Hamilto-

nian (1) in a large Fock subspace, the BCS approxi-

mation is often invoked. As an alternative approach,

the extended pairing model was proposed [6] with the

Hamiltonian:

Ĥ =

p
∑

j=1

εjnj −Gep

p
∑

i,j=1

a+
i aj −Gep

(

∞
∑

µ=2

1

(µ!)2

×
∑

i1 6=i2 6=···6=i2µ

a+
i1

a+
i2
· · ·a+

iµ
aiµ+1

aiµ+2
· · ·ai2µ

)

, (2)

where no pair of indices among {i1, i2, · · · , i2µ} is the

same for any µ. Besides the usual Nilsson mean field

and the standard pairing interaction (1), the Hamilto-

nian (2) also includes many-pair hopping terms that

allow nucleon pairs to simultaneously scatter (hop)

between and among different Nilsson levels. With this

extension in play, the model becomes exactly solvable.

The k-pair excitation energies of (2) are given by

E(ζ)
k =

2

χ(ζ)
−Gep(k−1), (3)

where χ(ζ) should satisfy

2

χ(ζ)
+

∑

16i1<i2<···<ik6p

Gep

(1−χ(ζ)
∑k

µ=1
εiµ

)
= 0, (4)

in which χ(ζ) is the ζ-th solution of (4). Similar re-

sults can be derived for even-odd systems by using

this approach except that the index j of the level oc-

cupied by the single nucleon must be excluded from

the summation and the single-particle energy term εj

contributing to the eigenenergy from the first term of

(2) must be included. Extensions to many broken-

pair cases are likewise straightforward.

In any mean-field plus pairing model, the bind-

ing energy can be calculated in the following way:

(a) For a chain of isotopes, the number of valence

protons is a constant. Hence, the contribution from

valence protons to binding energy is also a constant.

Therefore, only the neutron Hamiltonian given by (2)

needs to be considered. As a consequence, contribu-

tions to excitation energies from the proton pairing

interaction can be ignored, which is called the frozen

proton-pair excitation approximation. (b) Since only

the valence neutrons above a major shell are consid-

ered, the contributions to the binding energy from the

core are roughly constant and can be simply added

in without affecting the excitation spectra. Further-

more, besides the residual interactions among valence

neutrons, the binding energy also increases with in-

creasing the number of valence particles and this is

many orders of magnitude larger than that due to

the residual pairing, which can be estimated from

the binding energy per particle of the nucleus. As

a consequence, in the calculation, the neutron single-

particle energy is expressed as εj = εj−ε0−ε, where εj

is the neutron single-particle energy calculated from

the Nilsson model, ε0 is the contribution from the

core, which can be determined by the corresponding

magic nucleus in the beginning of a major shell be-

ing considered and ε is the average binding energy

per valence neutron in the shell and is taken to be

a parameter of the theory. In the rare earth region,

for example, since the valence neutrons (protons) oc-

cupy Nilsson orbits in the sixth (fifth) major shell, ε0

for the neutron (proton) single-particle energy is just

the single-particle energy of the last Nilsson level for

neutrons (protons) of 132Sn, while the average binding

energy per valence neutron in the sixth major shell

ε is a parameter that is adjusted to fit the binding

energy, and as an approximation, taken to be a con-

stant for the entire shell. Since only one major shell

is considered and there are 22 Nilsson levels in the

sixth major shell, the total number of Nilsson orbits

is p = 22 for the valence neutrons in our calculation.

Finally, the binding energy of nuclei in the rare earth

region can be expressed as

EB = E(core)
B +EB(π)+EB(ν), (5)

where E(core)
B is the binding energy of 132Sn, EB(π) is

the binding energy contributed from the mean-field

plus pairing interaction among the valence protons,

which is approximately a constant because the num-

ber of valence protons is fixed for a chain of isotopes

and EB(ν) is the binding energy contributed from

the mean-field plus pairing interaction of the valence

neutrons calculated from (1) in the standard pairing

model, from (2) in the extended pairing model and

from the corresponding Hamiltonian of the nearest

orbit pairing model [8]. Deformation parameters of

the Nilsson mean-field for all isotopes considered are

taken from [9], which were determined systematically

from the corresponding experimental data [10].
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3 Numerical results and discussions

In the rare earth region, the experimental data

on Er, Yb and Hf isotopes are more abundant than

for most other isotopes and therefore these were cho-

sen for this study. The binding energies, even-odd

mass differences and pairing excitation energies were

fit by the Nilsson mean-field plus the extended pair-

ing model and compared with the results obtained

from the standard pairing and nearest orbit pairing

models. We used a mean-square deviation measure to

estimate the deviation of binding energies in a chain

of isotopes with

σ =

[

∑

µ

(Eth
µ −Eexp

µ )2/N

] 1
2

, (6)

where Eth
µ is the theoretical value of the binding en-

ergy, Eexp
µ is the corresponding experimental value,

N is the total number of nuclei considered and the

sum runs over the nuclei in the chain.

In the fitting procedure, the average binding

energy per particle ε and the pairing interaction

strength parameters were determined from the cor-

responding experimental values for the binding en-

ergies of the isotopes considered. In the extended

pairing model, for example, the best fit requires that

ε =−7.475 MeV for the Er isotopes, ε =−7.476 MeV

for the Yb isotopes and ε =−7.71 MeV for the Hf iso-

topes. Specifically, for 160Er, Gep = 0.001205 MeV in

the extended pairing model, while G = 0.055 MeV in

the standard pairing model with BCS approximation.

In the nearest orbit pairing model, the nearest orbit

pairing parameters are Gαβ = Ae−B(εα−εβ)2 when α

and β are the same or the nearest orbits, where εα

is the single particle energy of the orbit α obtained

from the Nilsson model [5]. In this case, the param-

eters A = 2.33 MeV, B = 0.1 MeV−2 for 160Er. Once

the binding energies are fit, the even-odd mass differ-

ence is calculated from

P (A) = EB(A+1)+EB(A−1)−2EB(A), (7)

where EB(A) is the binding energy of a nucleus with

mass number A.

The quality of the fits, as measured by mean-

square deviation from experiment, of the extended

pairing (EP) model, the standard pairing model enha-

Fig. 1. The theoretical values and the corresponding experimental values [10] of the even-odd mass differences

of 154–169Er, 156–171Yb and 156–173Hf, where P (in MeV) is the even-odd mass difference, A is the mass number

of the nucleus, the dots show the experimental values and the theoretical values are connected by the lines.
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nced by the BCS approximation and a nearest orbit

pairing (NOP) model, are shown in Table 1. These

results very clearly demonstrate that for the nuclei

considered, the extended pairing model reproduces

binding energies considerably closer to experiment

than the other two models. Fig. 1 also shows the

even-odd mass differences among the nuclei in these

isotopic chains. The latter is a further, even more

stringent test of the applicability of each model. So,

although the three models produce generally similar

results, these analyses suggest that the extended pair-

ing model with deviations as shown in Table 1 is a

Table 1. The mean-square deviation (in MeV)

for fits to the binding energies of 154–169Er,
156–171Yb and 156–173Hf.

nucleus σEP σBCS σNOP

Er 0.0095 0.0824 0.1634

Yb 0.0003 0.1205 0.0419

Hf 0.0001 0.1163 0.0957

better description for the nuclei of Fig. 1.

In addition, since the quantum number of the an-

gular momentum projection along the third axis in

the intrinsic frame is considered to be a conserved

quantity, the excited states determined by these mod-

els can be regarded approximately as pairing excita-

tion states with the same spin and parity as those

of the ground state of a nucleus. Table 2 provides

the pairing excitation energies obtained from the ex-

tended pairing model, EEP, the nearest orbit pair-

ing model, ENOP and the standard pairing model

with BCS approximation, EBCS, in comparison with

those observed in experiment. Some deviation from

the experimental data is expected since the proton

pairing excitation is frozen and the proton-neutron

quadrupole-quadrupole interaction is neglected. Nev-

ertheless, the comparisons are not unreasonable, with

the extended pairing model typically showing better

results – in most cases – than the other models.

Table 2. The pairing excitation energies (in MeV) of 166−173Hf, 154−169Er, and 160−171Yb, where EEP is the

pairing excitation energy calculated from the extended pairing model, ENOP is that calculated from the

nearest orbit pairing model, EBCS is that calculated from the standard pairing model with BCS proximation

and the experimental data are taken from Ref. [11]. The dash denotes that the corresponding state is not

observed in experiment.

nucleus mass number spin and parity E
exp

EEP ENOP EBCS

166−173Hf 166 0+
2 0.695 0.726 0.651 0.333

0+
3 0.909 1.163 1.333 1.304

167 5
2

−

2
—— 0.528 0.876 1.109

5
2

−

3
—— 0.883 1.793 1.998

168 0+
2 0.942 1.111 0.691 0.932

0+
3 —— 1.995 1.332 1.752

169 5
2

−

2
0.059 0.179 0.872 0.902

5
2

−

3
—— 0.411 0.879 1.381

170 0+
2 0.880 0.721 0.6772 0.834

0+
3 —— 1.633 1.428 1.304

171 7
2

+

2
0.555 0.134 0.800 0.837

7
2

+

3
0.789 0.729 0.972 1.445

172 0+
2 0.871 0.799 0.645 0.608

0+
3 1.295 0.867 1.647 0.725

173 1
2

−

2
—— 0.041 0.416 0.066

1
2

−

3
—— 0.632 1.609 1.026

154–169Er 154 0+
2 —— 0.893 1.114 0.236

0+
3 —— 1.587 2.264 1.482

155 7
2

−

2
—— 0.368 1.264 0.313

7
2

−

3
—— 0.543 2.828 1.697

156 0+
2 0.9304 0.850 1.305 1.201

0+
3 —— 2.040 2.240 1.522

157 3
2

−

2
0.110 1.031 1.789 0.351

3
2

−

3
0.242 1.352 2.048 0.981
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Table 2. (continued)

nucleus mass number spin and parity E
exp

EEP ENOP EBCS

154–169Er 158 0+
2 0.806 1.087 1.083 0.238

0+
3 1.387 1.364 1.893 0.864

159 3
2

−

2
—— 0.914 0.587 0.090

3
2

−

3
—— 0.897 1.231 0.950

160 0+
2 0.894 0.891 0.9623 0.041

0+
3 —— 0.967 1.794 0.922

161 3
2

−

2
0.725 0.292 1.016 0.925

3
2

−

3
—— 0.397 2.235 1.496

162 0+
2 1.087 0.854 0.923 0.827

0+
3 1.421 1.901 1.877 1.447

163 5
2

−

2
0.164 0.164 1.027 1.432

5
2

−

3
0.440 0.604 1.935 2.769

164 0+
2 1.246 1.514 0.991 0.796

0+
3 1.417 2.459 1.913 2.004

165 5
2

−

2
0.296 0.096 1.612 1.252

5
2

−

3
0.384 0.397 2.131 1.989

166 0+
2 1.460 1.813 0.942 1.182

0+
3 2.189 3.083 1.559 1.915

167 7
2

−

2
0.641 0.134 1.471 1.161

7
2

−

3
0.873 0.809 1.589 2.065

168 0+
2 1.217 1.915 0.695 1.299

0+
3 1.422 5.255 1.289 1.423

169 1
2

−

2
0.562 0.561 1.023 0.415

1
2

−

3
1.094 4.381 1.530 0.973

160−171Yb 160 0+
2 1.086 0.659 0.851 0.448

0+
3 —— 1.497 1.476 0.756

161 3
2

−

2
0.211 0.147 1.095 0.748

3
2

−

3
—— 0.371 1.236 0.804

162 0+
2 0.606 1.815 0.548 0.654

0+
3 1.006 2.638 1.465 0.662

163 3
2

−

2
0.871 0.388 0.981 0.535

3
2

−

3
—— 0.511 2.066 1.471

164 0+
2 0.976 1.777 0.867 0.268

0+
3 —— 2.150 1.736 1.186

165 5
2

−

2
0.174 0.469 0.759 1.273

5
2

−

3
0.401 1.427 1.279 2.397

166 0+
2 1.043 1.590 0.944 0.852

0+
3 —— 2.715 1.788 1.846

167 5
2

−

2
0.278 0.121 1.179 0.992

5
2

−

3
0.239 0.369 2.444 1.513

168 0+
2 1.154 2.063 0.887 0.941

0+
3 1.197 3.190 1.630 1.612

169 7
2

+

2
0.647 0.133 0.713 0.988

7
2

+

3
0.832 1.064 1.605 1.825

170 0+
2 1.069 1.851 0.812 0.772

0+
3 1.229 2.167 1.350 0.844

171 1
2

−

2
0.953 0.698 1.042 0.788

1
2

−

3
0.988 1.148 1.298 0.862
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4 Summary

The mean-field plus the extended pairing model

for well-deformed nuclei is used to describe the rare

earth nuclei. Within the proton frozen-pair approxi-

mation, the binding energies, pairing excitation ener-

gies, even-odd mass differences of some Er, Yb and Hf

isotopes are calculated and compared with the cor-

responding experimental data, the results obtained

from the standard pairing model with BCS approx-

imation and the nearest orbit pairing model. The

results show that the extended pairing model is sys-

tematically better than the other two models in fits

within these three chains of isotopes as far as the

binding energies and even-odd mass differences are

considered. However, the deviation in pairing ex-

citation energies is less well described, presumably

due to the proton frozen-pair approximation and the

negligence of proton-neutron quadrupole-quadrupole

interaction. Further analyses along this line are in

progress. An extension that adopts a relativistic

mean-field [12] plus the extended pairing interaction

is straightforward and will be presented elsewhere.

Since the total angular momentum in these deformed

mean-field plus the pairing models is not a conserved

quantity, to study the excited states in these models,

an angular momentum projection technique similar

to [13] must be adopted. Work related to this is also

in progress.

References

1 Bardeen J, Cooper L N, Schrieffer J R. Phys. Rev., 1957,

108: 1175

2 Ring P, Schuck P. The Nuclear Many-Body Problem.

Springer-Verlag, Berlin, 1980

3 ZENG J Y, CHENG C S. Nucl. Phys. A, 1983, 405: 1

4 WU C S, ZENG J Y. Phys. Rev., 1989, 39: 666

5 Molique H, Dudek J. Phys. Rev. C, 1977, 56: 1795

6 PAN F, Gueorguiev V G, Draayer J P. Phys. Rev. Lett.,

2004, 92: 112503

7 PAN F, XIE M X, GUAN X, DAI L R, Draayer J P. Phys.

Rev. C, 2009, 80: 044306

8 PAN F, Draayer J P. J. Phys. A, 2000, 33: 9095
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