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Abstract: In a combined investigation of B→K(∗)l+l− decays, constraints on the related couplings in family

non-universal Z′ models are derived. We find that within the allowed parameter space, the recently observed

forward-backward asymmetry in the B → K∗l+l− decay can be explained by flipping the signs of the Wilson

coefficients Ceff
9 and C10. With the obtained constraints, we also calculate the branching ratio of the Bs →µ

+
µ
−

decay. The upper bound of our prediction is nearly an order of magnitude smaller than the upper bound given

by the CDF Collaboration recently.
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1 Introduction

B → K(∗)l+l− decays play a very important role

in heavy flavor physics. At the quark level, these

decays involve the flavor-changing neutral current

(FCNC) of the b → s transition, which is a purely

quantum loop-mediated effect in the Standard Model

(SM). These decay modes have therefore been pro-

posed to test the SM predictions [1]. In addition

to the branching ratio, several observables of the

B → K∗l+l− decay, such as the longitudinal po-

larization fraction, the forward-backward asymme-

try (AFB), the isospin symmetry and the trans-

verse asymmetry, have been proposed to probe pos-

sible new physics (NP) [2]. Various NP models

have thus been scrutinized for their effects on these

observables [3].

A few years ago, the forward-backward asymme-

try of B → K∗l+l− was first observed by the Belle

Collaboration [4]. The BaBar Collaboration also pub-

lished its results in this channel earlier this year [5, 6].

Recently, the Belle Collaboration updated its mea-

surements in B→K(∗)l+l− decays [7]. In these exper-

iments, forward-backward asymmetry is measured as

a function of q2 =M 2
llc

2, the invariant mass of the lep-

ton pair. In comparison, BaBar only has two q2 bins

of data, while Belle has six. Their fitted AFB spec-

trum is generally higher than the SM expectation in

all q2 bins. This inspired us to do further investiga-

tions on these decays and see whether any NP models

can better explain the experimental data.

In this paper, we consider a class of family non-

universal Z′ models that induce FCNC’s at tree level

[8]. In such models, fermions in different families have

different couplings to the Z′ boson in the gauge ba-

sis. After rotating to the physical basis, off-diagonal

couplings are generally produced, inducing FCNC’s

at tree level. These FCNC couplings are subject to

strong constraints from low-energy experiments. The

phenomenological aspects of such models have been

extensively analyzed by various groups in recent years

[9–13]. In particular, the possible Z′-b-s coupling has

received a lot of attention because it may explain

some of the puzzling B physics data. Based on the

Received 14 April 2011, Revised 20 June 2011

* Supported by National Science Council of Taipei, (NSC 97-2112-M-008-002-MY3, NCTS), National Natural Science Founda-

tion of China (10735080, 11075168, 10525523) and National Basic Research Program of China (973) (2010CB833000)
©2012 Chinese Physical Society and the Institute of High Energy Physics of the Chinese Academy of Sciences and the Institute

of Modern Physics of the Chinese Academy of Sciences and IOP Publishing Ltd



No. 1 Cheng-Wei Chiang et al: The study of B→K(∗)l+l− decays in family non-universal Z′ models 15

previous analysis, we study whether the recently ob-

served B → K(∗)l+l− data can be accommodated

within this model as well.

This paper is organized as follows. In Section. 2

we first review the B → K(∗)l+l− decays in the SM,

and in the course of this we define the quantities rel-

evant for the calculations, such as form factors, effec-

tive Hamiltonian, explicit formulas of the amplitudes,

decays widths and forward-backward asymmetries.

In Section 3 we describe the Z′ model with tree-level

FCNC’s and deduce its effects on the B → K(∗)l+l−

decays. We then use the observables to constrain the

model parameters. We find that the observed data

in B → K(∗)l+l− can be accommodated in such a Z′

model. We also predict the range of Br(Bs →µ
+
µ

−)

based on the constrained parameter space. Finally,

we summarize our findings in Section 4.

2 B→K(∗)l+l− decays in the standard

model

2.1 Parametrization of the hadronic transi-

tional matrix elements

The semileptonic decays investigated here involve

hadronic matrix elements representing the B → K(∗)

transitions. Therefore, we first define the B→K form

factors as follows:

〈K(p)|s̄γµb|B(pB)〉= f+(q2)

{

(pB +p)µ−
m2

B−m2
K

q2
qµ

}

+
m2

B−m2
K

q2
f0(q

2)qµ ,

〈K(p)|s̄σµνqνb|B(pB)〉= i(pB +p)µq
2−qµ(m2

B−m2
K)

fT(q2)

mB +mK

,

(1)

where q = pB − p is the momentum transfer to the lepton pairs. The B → K∗ transitional form factors are

defined as:

〈K∗(p,ε∗)|q̄γµb|B̄(pB)〉 = − 2V (q2)

mB +mK∗

εµνρσε∗νpBρpσ,

〈K∗(p,ε∗)|q̄γµγ5b|B̄(pB)〉 = 2imK∗A0(q
2)
ε∗ ·q
q2

qµ+i(mB +mK∗)A1(q
2)

[

ε∗µ−
ε∗ ·q
q2

qµ
]

−iA2(q
2)

ε∗ ·q
mB +mK∗

[

(pB +p)µ−m2
B−m2

K∗

q2
qµ

]

,

〈K∗(p,ε∗)|q̄σµνqνb|B̄(pB)〉 = −2iT1(q
2)εµνρσε∗νpBρpσ,

〈K∗(p,ε∗)|q̄σµνγ5qνb|B̄(pB)〉 = T2(q
2) [(m2

B−m2
K∗)ε∗µ−(ε∗ ·q)(pB +p)µ]

+T3(q
2)(ε∗ ·q)

[

qµ− q2

m2
B−m2

K∗

(pB +p)µ
]

. (2)

In the calculations of the semileptonic decays, we

need the q2 dependence in the form factors. For

B → K∗ transitions, we adopt the dipole model

parametrization for the form factors:

F (q2) =
F (0)

1−a(q2/m2
B)+b(q2/m2

B)2
, (3)

where a and b are parameters to be determined. We

calculate the form factors in the PQCD approach

[14] near the q2 = 0 region, where the K∗ meson re-

coils very quickly, and determine their values at some

points. Then we extrapolate our results to the en-

tire kinematic regime through fitting. Our results in

the PQCD approach, as well as those obtained using

QCD sum rules (QCDSR) [15], are listed in Table 1.

In our calculations we mainly use the PQCD results.

The QCDSR results are included only as a compari-

son because we do not have the explicit errors on the

QCDSR results.

For the form factors of the B → K transition, we

adopt a different parametrization:

F (q2) = F (0)exp [c1(q
2/m2

B)+c2(q
2/m2

B)2

+c3(q
2/m2

B)3] , (4)

because the authors of Ref. [16] find that in their fit-

ting, the extrapolation of the dipole parametrization

to maximum q2 is prone to reach a serious singular-

ity below the physical cut starting at q2 =m2
B. The

values of the parameters in the B → K form factors

[16] are listed in Table 2.
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Table 1. B→K∗ form factors in the PQCD approach and QCD sum rules (QCDSR).

PQCD QCDSR [15] PQCD QCDSR [15]

V (0) 0.26 0.458 T1(0) 0.23 0.379

a(V ) 1.75 1.55 a(T1) 1.70 1.59

b(V ) 0.68 0.575 b(T1) 0.63 0.615

A0(0) 0.30 0.470 T2(0) 0.23 0.379

a(A0) 1.72 1.55 a(T2) 0.71 0.49

b(A0) 0.62 0.680 b(T2) −0.19 −0.241

A1(0) 0.19 0.337 T3(0) 0.20 0.261

a(A1) 0.79 0.60 a(T3) 1.58 1.20

b(A1) −0.09 −0.023 b(T3) 0.49 0.098

A2(0) 0.283

a(A2) 1.18

b(A2) 0.281

Table 2. B → K form factors in the light cone

sum rules with parametrization, Eq. (4).

F (0) c1 c2 c3

f+(q2) 0.319 1.465 0.372 0.782

f0(q2) 0.319 0.633 −0.095 0.591

fT(q2) 0.355 1.478 0.373 0.700

2.2 Effective Hamiltonian and decay ampli-

tudes

At the quark level, the B → K(∗)l+l− decays are

dominated by the b→ sl+l− transition, the Hamilto-

nian for which is given by

Heff =−GF√
2
VtbV

∗
ts

10
∑

i=1

Ci(µ)Oi(µ) , (5)

where Vtb and Vts are the Cabibbo-Kobayashi-

Maskawa matrix elements and Ci(µ) is the Wilson

coefficient evaluated at the scale µ. The local opera-

tors Oi(µ) are given by [17]

O1 = (s̄αcα)V−A(c̄βbβ)V−A,

O2 = (s̄αcβ)V−A(c̄βbα)V−A,

O3 = (s̄αbα)V−A

∑

q

(q̄βqβ)V−A,

O4 = (s̄αbβ)V−A

∑

q

(q̄βqα)V−A,

O5 = (s̄αbα)V−A

∑

q

(q̄βqβ)V+A,

O6 = (s̄αbβ)V−A

∑

q

(q̄βqα)V+A,

O7 =
emb

8π2
s̄σµν(1+γ5)bFµν +

ems

8π2
s̄σµν(1−γ5)bFµν ,

O9 =
αem

2π
(¯̀γµ`)(s̄γ

µ(1−γ5)b),

O10 =
αem

2π
(¯̀γµγ5`)(s̄γ

µ(1−γ5)b) , (6)

where α and β are color indices, q=u, d, s, c,

(q̄1q2)V−A(q̄3q4)V−A≡ [q̄1γ
µ(1−γ5)q2][q̄3γµ(1−γ5)q4],

and (q̄1q2)V−A(q̄3q4)V+A ≡ [q̄1γ
µ(1− γ5)q2][q̄3γµ(1 +

γ5)q4].

With the above Hamiltonian, the amplitude of the

b→ sl+l− transition can be written as

A(b→ sl+l−)

=
GF

2
√

2

αem

π
VtbV

∗
ts

{

Ceff
9 (q2)[s̄γµ(1−γ5)b][¯̀γ

µ`]

+C10[s̄γµ(1−γ5)b][¯̀γ
µγ5`]

−2mbC
eff
7

[

s̄iσµν
qν

q2
(1+γ5)b

]

[¯̀γµ`]

−2msC
eff
7

[

s̄iσµν
qν

q2
(1−γ5)b

]

[¯̀γµ`]

}

, (7)

where mb is the b quark mass in the MS scheme. The

Wilson coefficients Ceff
7 =C7−C5/3−C6 and Ceff

9 con-

tain both the long-distance and short-distance contri-

butions:

Ceff
9 (q2) = C9(µ)+Ypert(q

2)+YLD(q2). (8)

Here Ypert represents the perturbative contribution,

and YLD is the long-distance part containing contri-

butions from the resonant states and can be excluded

by experimental analysis. Thus we will not include

YLD in our calculation, and

Ceff
9 (q2) = C9(µ)+Ypert(q

2), (9)

with the detailed form of Ypert given in Ref. [18]. The

values of the wilson coefficients in SM are listed in

Table 3.
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Table 3. Values of Wilson coefficients Ci(mb) in the leading logarithmic approximation, with mW =80.4 GeV,

µ = mb,pole [17].

C1 C2 C3 C4 C5 C6 Ceff
7 C9 C10

1.107 −0.248 −0.011 −0.026 −0.007 −0.031 −0.313 4.344 −4.669

The B → K∗l+l− decay is more complicated be-

cause of its polarization structures in the final state.

We will use the helicity basis. By re-expressing the

metric tensor

gµν =−
∑

λ

εµ(λ)ε
∗
ν(λ)+

qµqν
q2

, (10)

we can decompose the amplitude A(B̄→K∗l+l−) into

the Lorentz-invariant leptonic part L(L/R,λ) and the

hadronic part H(L/R,λ):

A(B̄→ K̄∗l+l−) = Lµ(L)Hν(L)gµν+Lµ(R)Hν(R)gµν

= −
∑

λ

L(L,λ)H(L,λ)

−
∑

λ

L(R,λ)H(R,λ). (11)

The details have been given in Appendix C of

Ref. [19]. The explicit formulas of the functions

L(L/R,λ) and H(L/R,λ) are listed in Appendix A.

2.3 The decay widths and branching ratios

With the form factors given in Section 2.1 and

Eq. (7), we obtain the dilepton spectrum of B →
Kl+l− as

dΓi(B→Kl+l−)

dq2

=
G2

F|Vtb|2|V ∗
ts |2α2

emλ
3/2

1536π5m3
B

{

|C10f+(q2)|2

+

∣

∣

∣

∣

Ceff
9 f+(q2)+

2Ceff
7 (mb +ms)

mB +mK

fT(q2)

∣

∣

∣

∣

2
}

, (12)

where

λ = (m2
K∗ +m2

B−q2)2−4m2
Bm

2
K∗

= (m2
B−m2

K∗ −q2)2−4m2
K∗q2. (13)

For the B→K∗l+l− decay, we define the direction

opposite to the momentum of the K∗ meson in the

rest frame of the B meson as the +z direction. In

the center-of-mass frame of l+l−, θ1 is defined as the

angle between the z axis and the momentum of l−.

In the experiment, the K∗ meson usually decays to

the Kπ final state. We define the angle between the

decay plane K∗ → Kπ and the plane determined by

l+l− as φ. Combining the leptonic amplitudes, the

hadronic amplitudes and the phase space, the partial

decay width of B→K∗l+l− is given by

dΓi(B̄→ K̄∗l+l−)

=

√
λ

1024π4m3
B

dcosθ1dφdq2|Ai(B→K∗l+l−)|2

=

√
λ

1024π4m3
B

dcosθ1dφdq2(|L(L,i)H(L,i)|2

+|L(R,i)H(R,i)|2) , (14)

where i= 0,+ or − denotes the three different polar-

izations of the K∗.

After integrating out θ1 and φ in Eq. (14), one ob-

tains the dilepton spectrum of the B→K∗l+l− decay

as:

dΓi(B→K∗l+l−)

dq2

=

√
λq2

96π3m3
B

[|H(L,i)|2 + |H(R,i)|2] . (15)

In Section 2.2, one can find that among the Wil-

son coefficients only Ceff
9 has the q2 dependence. The

dilepton spectra of B→K(∗)l+l− decays are shown in

Fig. 1, with and without Ypert(q
2) in Ceff

9 included.

After further integrating out the q2 dependence, we

obtain the total branching ratios:

Br(B→Kl+l−) =

{

(4.70+1.29
−0.71)×10−7 (q2 part in Ceff

9 included),

(4.45+1.22
−0.67)×10−7 (q2 part in Ceff

9 excluded),
(16)

Br(B→K∗l+l−) =

{

(16.5+7.8
−5.7)×10−7 (q2 part in Ceff

9 included),

(15.8+7.5
−5.5)×10−7 (q2 part in Ceff

9 excluded).
(17)
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Fig. 1. q2-dependence of the branching ratios of the B → Kl+l− (left plot) and B → K∗l+l− (right plot)

decays. In the left plot, the red solid (blue dashed) curve stands for the dilepton spectrum with (without)

the Ypert(q
2) part included in Ceff

9 . The right plot shows the spectrum predicted in PQCD and QCDSR

with and without the Ypert(q
2) part in Eq. (9). The black solid (red long dashed) curve is the PQCD result

with (without) Ypert(q
2) and the blue short dashed (pink dotted) curve is the QCDSR result with (without)

Ypert(q
2). In the curves where Ypert(q

2) is included, a kink shows up because it is a piecewise function.

These predictions are to be compared with the exper-

imental results [7]:

Br(B→Kl+l−) = (4.8+0.5
−0.4±0.3)×10−7,

Br(B→K∗l+l−) = (10.7+1.1
−1.0±0.9)×10−7.

(18)

From Fig. 1, Eq. (16) and Eq. (17), one finds that the

Ypert(q
2) piece in Ceff

9 has a small effect on the branch-

ing ratios in comparison with other uncertainties. To

simplify the notation, we define C ′
9 ≡ Ypert(q

2), and

thus Ceff
9 = C9 +C ′

9. The differential branching ratio

of B → Kl+l− is then decomposed into the following

form

dBr(B→Kl+l−)

dq2

= |C10|2B′
1 + |Ceff

9 |2B′
2 + |Ceff

7 |2B′
3 +2Re[Ceff

9 Ceff∗
7 ]B′

4

= |C10|2B′
1 +[|C9|2 + |C ′

9|2 +2Re[C9C
′∗
9 ]]B′

2

+|Ceff
7 |2B′

3 +2Re[(C9 +C ′
9)C

eff∗
7 ]B′

4. (19)

After the integration over q2, Eq. (19) can be rear-

ranged as

Br(B→Kl+l−) = |C10|2B1 + |C9|2B2 + |Ceff
7 |2B3

+2Re[C9C
eff∗
7 ]B4 +2Re[C9]B5

+2Re[Ceff
7 ]B6 +B7, (20)

where B5 (B6, B7) contains the integration of Re[C ′
9]

B′
2 (Re[C ′

9]B
′
4, |C ′

9|2B′
2). Similarly, Br(B → K∗l+l−)

is decomposed as

Br(B→K∗l+l−) = |C10|2B∗
1 + |C9|2B∗

2 + |Ceff
7 |2B∗

3

+2Re[C9C
eff∗
7 ]B∗

4 +2Re[C9]B
∗
5

+2Re[Ceff
7 ]B∗

6 +B∗
7 . (21)

The values of B(∗)
j with j= 1,2,3, ...,7 are, in units of

10−8 (10−7),

B1 = 1.28+0.30
−0.23 , B2 =B1 , B3 = 4.41+1.44

−0.82 ,

B4 = 2.33+0.71
−0.39 , B5 = 0.31+0.09

−0.05 , B6 = 0.58+0.19
−0.10 ,

B7 = 0.18+0.04
−0.03 , B

∗
1 = 0.41+0.20

−0.15 , B
∗
2 =B∗

1 ,

B∗
3 = 12.74+6.35

−4.86 , B
∗
4 = 0.84+0.46

−0.45 , B
∗
5 = 0.09+0.04

−0.03 ,

B∗
6 = 0.18+0.10

−0.10 , B
∗
7 = 0.04+0.02

−0.02. (22)

These values will be used to constrain the cou-

plings in the Z′ model later. From Fig. 1 and

Eqs. (A7) to (A12), one can find a pole at q2 = 0

in dBr(B→K∗l+l−)/dq2. That is why B∗
3 is much

larger than the others.

2.4 The forward-backward asymmetry

The differential forward-backward asymmetry of

B̄→ K̄∗l+l− is defined by

dAFB

dq2
=

∫1

0

dcosθ1
d2Γ

dq2dcosθ1
−

∫0

−1

dcosθ1
d2Γ

dq2dcosθ1
,

(23)

while the normalized differential forward-backward

asymmetry is defined by

dĀFB

dq2
=

dAFB

dq2

dΓ

dq2

=
3

4

−|H(L,+)|2 + |H(R,+)|2 + |H(L,−)|2−|H(R,−)|2
|H(L,0)|2 + |H(R,0)|2 + |H(L,+)|2 + |H(R,+)|2 + |H(L,−)|2 + |H(R,−)|2 . (24)
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Substituting the expressions in Eqs. (A7) to (A12)

into Eq. (24), we get the explicit expression for
dĀFB

dq2

as follows:

dĀFB

dq2
=

3N(q2)

4D(q2)
, (25)

where

N(q2) = |Vtb|2|V ∗
ts |2G2

Fα
2
em

√
λq2{−Re[C10]C

eff
7 mb

×[(mB +mK∗)A1(q
2)T1(q

2)

+(mB−mK∗)T2(q
2)V (q2)]

+Re[Ceff
9 C∗

10][−q2V (q2)A1(q
2)]},

D(q2) = 2π
2(q2)2[|H(L,0)|2 + |H(R,0)|2

+|H(L,+)|2 + |H(R,+)|2

+|H(L,−)|2 + |H(R,−)|2]. (26)

In the above expression, terms suppressed by ms are

dropped for simplicity. As can be explicitly checked,

the pole in the dilepton spectrum at q2 = 0 disappears

in the denominator.

According to Eq. (26), the numerator of dAFB/dq
2

is zero at q2 = 0 because of the common factor q2,

while the denominator has a non-zero value because

its common factor (q2)2 cancels with the (q2)2 fac-

tor arising from Eqs. (A8), (A9), (A11) and (A12).

Thus dAFB/dq
2 = 0 at q2 = 0. In the SM, Ceff

7 < 0,

Ceff
9 > 0 and C10 < 0; thus the first term in the curly

bracket of N(q2) is negative and the second term is

positive. In the regime where q2 is near zero, the

first term gives the dominant contribution since the

second term is suppressed by the small q2. There-

fore, the sign of dAFB/dq
2 is determined by the first

term and gives a negative value. As q2 increases, the

second term becomes dominant. There exists a point

where dAFB/dq
2 becomes zero: the so-called forward-

backward asymmetry zero. The position of the zero

is determined by Ceff
7 and Ceff

9 , as the form-factor

dependence drops at the leading order [2]. As q2 be-

comes even larger, the effect of the overall factor
√
λ

becomes crucial. Eq. (13) tells us that λ = 0 at the

largest recoil where q2 = (mB −mK∗)2. Therefore,

dAFB/dq
2 falls back to zero at the end of the kine-

matic regime. All these behaviors of dAFB/dq
2 can

be observed in Fig. 2. The red dashed curve is drawn

with the contribution of only the second term in the

curly bracket of N(q2). This shows the importance of

Ceff
7 in the low q2 regime.

Fig. 2. The forward-backward asymmetry for

B → K∗l+l−, with form factors given by the

PQCD approach. The black solid curve is

given with SM C7 and the red dashed curve is

given with C7 =0.

However, the latest Belle data [7] do not show an

obvious zero for dAFB/dq
2, and the values at all q2

are consistently higher than the SM expectation. A

common solution is to flip the sign of Ceff
7 as it is still

consistent with the constraint from B→Xsγ data. In

the next section, we offer an alternative solution in

the family non-universal Z′ model.

3 Constraints on the couplings in Z′

physics

3.1 b→ sl+l− in the Z′ FCNC model

In the appropriate gauge basis, the U(1)′ currents

are

JµZ′ = g′
∑

i

ψ̄iγ
µ[εψL

i PL +εψR

i PR]ψi, (27)

where i is the family index and ψ labels the fermions

(up- or down-type quarks, or charged or neutral lep-

tons), and PL,R = (1∓γ5)/2. According to some string

construction or GUT models such as E6, it is possi-

ble to have family non-universal Z′ couplings. That

is, even though εL,Ri are diagonal, the couplings are

not family universal. After rotating to the physical

basis, FCNCs generally appear at tree level in both

the left-handed (LH) and right-handed (RH) sectors.

Explicitly,

BψL =VψL
εψLV †

ψL
, BψR =VψR

εψRV †

ψR
. (28)

Moreover, these couplings may contain CP -violating

phases beyond that of the SM.

In particular, Z′b̄s couplings can be generated:

LZ′

FCNC =−g′(BL
sbs̄LγµbL+BR

sbs̄RγµbR)Z ′µ+h.c.. (29)

The couplings in Eq. (29) lead to extra contributions

to the b → sl+l− decay at tree level, mediated by a
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virtual Z′ boson. The amplitude is given by

g′2

M 2
Z′

(

BL
sbs̄LγµbL +BR

sbs̄RγµbR
)

(BL
ll
¯̀
Lγ

µlL

+BR
ll

¯̀
Rγ

µ`R). (30)

There are thus four types of operators, OLL, OLR, ORL

and ORR. The above amplitude can be derived from

an effective Hamiltonian

HZ′

eff =
8GF√

2
(ρL

sbs̄LγµbL+ρR
sbs̄RγµbR)(ρL

ll
¯̀
Lγ

µ`L

+ρR
ll
¯̀
Rγ

µ`R), (31)

where

ρL,R
ff′ ≡ g′MZ

gMZ′

BL,R
ff′ , (32)

and g is the coupling associated with the SU(2)L

group in the SM. Throughout this analysis, we ig-

nore the renormalization group running effects due

to these new contributions because they are expected

to be small.

3.2 Constraints from the B→K(∗)l+l− decays

For the purpose of illustration and to avoid too

many free parameters, we assume that the FCNC

couplings of the Z′ and quarks only occur in the LH

sector. Therefore, ρR
sb = 0 and the effects of the Z′

FCNC currents simply modify the Wilson coefficients

C9 and C10 in Eq. (5). We denote these two modified

Wilson coefficients by Ceff,Z′

9 and CZ′

10 , respectively.

More explicitly,

Re[Ceff,Z′

9 ] = Re[Ceff
9 ]− 4πRe[ρL

sb](ρ
L
ll +ρ

R
ll )

VtbV ∗
tsαem

,

Im[Ceff,Z′

9 ] = Im[Ceff
9 ]− 4πIm[ρL

sb](ρ
L
ll +ρ

R
ll )

VtbV ∗
tsαem

,

Re[CZ′

10 ] = C10−
4πRe[ρL

sb](ρ
R
ll −ρL

ll)

VtbV ∗
tsαem

,

Im[CZ′

10 ] = −4πIm[ρL
sb](ρ

R
ll −ρL

ll)

VtbV ∗
tsαem

. (33)

For simplicity, we further assume that ρL
sb is real.

Then the imaginary part of Ceff
9 will not be affected

by the Z′ model, and CZ′

10 is still a real number.

First, we consider the constraint from the spec-

trum of dĀFB/dq
2. In order to fit the experimental

data, a sign flip is needed for dĀFB/dq
2 near the q2 = 0

regime. People usually consider the flipped-sign so-

lution with C7 =−CSM
7 , because it is still allowed by

the B → Xsγ data. However, an alternative solution

is to flip the signs of Ceff
9 and C10 instead, as is pos-

sible in our model. Below Eq. (26), it is noted that

in this regime the term proportional to Re[C10]C
eff
7

dominates. Therefore, one can flip the sign of C10:

Re[CZ′

10 ]> 0. (34)

Moreover, in order to keep the second term in the

curly bracket of N(q2) with the correct behavior, we

also need to flip the sign of Re[Ceff
9 ]. Thus, we require

Re[Ceff,Z′

9 ]< 0. (35)

Eqs. (34) and (35) are the constraints from the dĀFB/

dq2 spectrum obtained by the Belle Collaboration

(see Fig. 1 in Ref. [7]).

Next, we consider the constraints from the

branching ratios of the B → K(∗)l+l− decays. These

constraints are obtained in the following way. After

including the contributions of Z′, the upper (lower)

bound of the theoretical predictions should be greater

(smaller) than the experimental lower (upper) bound

at the 2σ level. When we deal with the experimental

data, we add the statistical and systematic errors in

quadrature. With Eqs. (21) and (22), we have the

following branching-ratio constraints:

B(∗)
1u (|CZ′

10 |2 + |CZ′

9 |2)+B(∗)
3u |Ceff

7 |2 +B(∗)
4u Re[CZ′

9 C
eff∗
7 ]

+B(∗)
5u Re[CZ′

9 ]+B(∗)
6u Re[Ceff

7 ]+B(∗)
7u >Br

(∗)
exp−2σ(∗)

l ,

(36)

B(∗)
1l (|CZ′

10 |2 + |CZ′

9 |2)+B(∗)
3l |Ceff

7 |2 +B(∗)
4l Re[CZ′

9 C
eff∗
7 ]

+B(∗)
5l Re[CZ′

9 ]+B(∗)
6l Re[Ceff

7 ]+B(∗)
7l <Br

(∗)
exp +2σ(∗)

u ,

(37)

where quantities with a star in the superscript are for

the B→K∗l+l− decay, the letters “u” and “l” in the

subscript represent the 1-σ upper and lower bounds

of the corresponding quantity B(∗)
i , respectively, and

Br(∗)exp denote the central values of the B → K(∗)l+l−

branching ratios.

Moreover, CZ′

9 = C9 +x with Ypert(q
2) excluded,

and CZ′

10 =C10 +y, where

x = −4πRe[ρL
sb](ρ

L
ll +ρ

R
ll )

VtbV ∗
tsαem

, (38)

y = −4πRe[ρL
sb](ρ

R
ll −ρL

ll)

VtbV ∗
tsαem

. (39)
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Then Eqs. (36) and (37) can be rearranged as

B(∗)
1u (x+T (∗)

u )2 +B(∗)
1u (y+C10)

2

+C(∗)
u >Br(∗)exp−2σ(∗)

l , (40)

B(∗)
1l (x+T (∗)

l )2 +B(∗)
1l (y+C10)

2

+C(∗)
l <Br(∗)exp +2σ(∗)

u , (41)

where

T (∗)

u/l =
2B(∗)

1u/lC9 +B(∗)

4u/lC
eff
7 +B(∗)

5u/l

2B(∗)

1u/l

,

C(∗)

u/l = B(∗)

1u/lC
2
9 +B(∗)

7u/l(C
eff
7 )2 +B(∗)

4u/lC
eff
7 C9

+B(∗)

5u/lC9 +B(∗)

6u/lC7 +B(∗)

7u/l

−B(∗)

1u/l

(

T (∗)

u/l

)2
. (42)

Substituting all the numerical values in Eqs. (34),

(35), (40) and (41), we have

x<−4.344, (43)

y > 4.669, (44)

1.58(x+3.99)2+1.58(y−4.669)2−37.88> 0, (45)

1.05(x+4.01)2+1.05(y−4.669)2−59.58< 0, (46)

0.61(x+3.89)2+0.61(y−4.669)2−6.38> 0, (47)

0.26(x+4.11)2+0.26(y−4.669)2−12.81< 0. (48)

Eqs. (43)–(48) give the constraints on x and y, which

are shown in Fig. 3. The common area of the above

six conditions is outside the red solid circle and inside

the blue long dashed circle, to the left of the solid ver-

tical line x=−C9 and above the solid horizontal line

y=−C10. This area gives

−
√

(Br∗exp +2σ∗
u−C∗

l )/B∗
1l−T ∗

l .x.−C9,

−C10 . y.
√

(Br∗exp +2σ∗
u−C∗

l )/B∗
1l−C10.

(49)

With Eqs. (38) and (39), we have
[√

(Br∗exp +2σ∗
u−C∗

l )/B∗
1l−C10−C9

]

K. Re[ρL
sb]ρ

R
ll

.
[

−
√

(Br∗exp +2σ∗
u−C∗

l )/B∗
1l−T ∗

l −C10

]

K,

[C10−C9]K. Re[ρL
sb]ρ

L
ll

.
[

−2
√

(Br∗exp +2σ∗
u−C∗

l )/B∗
1l−T ∗

l +C10

]

K, (50)

with K = (VtbV
∗
tsαem)/(4π). In the quark sector, the

couplings in Eq. (29) also lead to an NP contribu-

tion to B0
s -B̄

0
s mixing at tree level. In Refs. [20, 21],

it is assumed that only the LH sector of the quarks

has family non-universal U(1)′ couplings, as in the

current analysis. Thus, only the LH interaction in

Eq. (29) contributes to B0
s -B̄

0
s mixing. They find that

one can reproduce the measured value of ∆Ms if

ρL
sb . 10−3. (51)

As a rough estimate, here we take ρL
sb = 10−3. To-

gether with Eqs. (38), (39) and

Vtb = 0.999176, Vts =−0.03972, αem = 1/137, (52)

we obtain

−0.27 . ρL
ll .−0.11, (53)

−0.08 . ρR
ll . 0.09. (54)

We should emphasize that these parameter ranges

are obtained with some assumptions and the current

data. In particular, we have used a particular value of

ρL
sb for our illustration. Once new experimental data

or theoretical inputs are available, these constraints

can easily be updated with our formulas. In Fig. 3 we

also give the constraints from Ref. [13]. In their pa-

per, the authors gain the constraints by making the

experimental and theoretical values of B → Xsl
+l−

agree with each other in 1σ. However, we get our

constraints in 2σ. For a comparison, in Fig. 3 we

simply extrapolate their results to 2σ. One can find

that if we drop the constraint conditions of flipping

the signs of Ceff
9 and C10, we agree with each other.

However, if the AFB is expected to behave as how

we get constraints (34) and (35), the constraints in

Ref. [13] are too tight to satisfy the conditions.

In Fig. 4 we use the black dot from Fig. 3, where

both Ceff
9 (q2) and C10 flip signs from their SM val-

ues, to predict the dAFB/dq
2 spectrum in our model.

Since Ceff
9 (q2) is q2-dependent, the plot in Fig. 3 is

plotted with C9 and C10 flipping their signs. The

points that flip the signs of Ceff
9 (q2) and C10 should

be very close to this point. It is interesting to note

that the red dotted curve in Fig. 4 is identical to

the usual flipped-sign solution. This is not surprising

because flipping the signs of both Ceff
9 (q2) and C10 si-

multaneously is equivalent to flipping the sign of Ceff
7 ,

which can be seen from Eq. (26). This indicates that

by considering only the branching ratios and forward-

backward asymmetry of the B → K(∗)l+l− decays, it

is insufficient to determine which operators are sig-

nificantly modified by the NP.

Now a comment on the form factors is in order.

Because of the nonperturbative effects, we cannot get
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Fig. 3. The constraints from the branching ra-

tios of the B → K(∗)l+l− decays. The areas

outside the red solid and yellow short dashed

circles are determined by Eqs. (45) and (47),

respectively. The areas inside the pink and

blue circles are determined by Eqs. (46) and

(48), respectively. The areas to the left of the

line x = −C9 and above the line y = −C10

are determined by Eqs. (43) and (44), respec-

tively. The black dot is where both C9 and

C10 flip signs from their SM values. The two

rectangles, corresponding to S1 (the large rect-

angle) and S2 (the small rectangle) in Case

III, are the constraints given by Ref. [13].

One can see that their constraints are con-

sistent with our constraints from the branch-

ing ratios. However, their constraints are not

enough to change the signs of C9 and C10.

good results for the form factors when q2 is large. In

either PQCD or light cone sum rules, the form factors

are obtained in a region where q2 is small and then

extrapolated to the entire kinematical region through

fitting. As a result, whether the form factors can be

described well by the parametrization formula in the

large q2 region is questioned. In fact, the accuracy

of the parametrization formula becomes worse as q2

increases. Therefore, we do not think the theoretical

predictions at large q2 are reliable enough. This may

explain why the experimental values are still slightly

larger than the theoretical predictions in the large q2

regime, as shown in Fig. 4.

A closely related decay mode to the current anal-

ysis is the Bs → µ
+
µ

− decay. This mode has been

searched for with great interest at Tevatron. The up-

per bounds on the branching ratio at 95% confidence

Fig. 4. Forward-backward asymmetry in

QCDSR (red dotted line) and PQCD (black

solid line) with C9 and C10 flipping their signs

(the black dot in Fig. 3). The points with er-

ror bars are the experimental results from the

Belle Collaboration [7].

level are given by its two experimental groups as

Br(Bs →µ
+
µ

−)< 5.8×10−8(CDF) [22],

Br(Bs →µ
+
µ

−)< 1.2×10−7(DØ) [23].
(55)

The branching ratio of Bs → µ
+
µ

− is affected in our

model. With the inclusion of the Z′ contribution, the

branching ratio is given by [17]

Br(Bs →µ
+
µ

−)

= τBs

G2
F

4π
f 2
Bs
m2

µ
mBs

√

1−
4m2

µ

m2
Bs

|V ∗
tbVts|2

×
∣

∣

∣

∣

α

2πsin2 θW
Y

(

m2
t

m2
W

)

+2
ρL

bs(ρ
L
µµ

−ρR
µµ

)

V ∗
tbVts

∣

∣

∣

∣

2

, (56)

where all the functions and symbols are defined in

Ref. [17]. With the constraints in Eq. (49), we find

that the upper bound for this branching ratio is

Br(Bs →µ
+
µ

−) . 7.9×10−9. (57)

Note that the upper bound of the range is still smaller

than the current upper bound given by the CDF Col-

laboration.

4 Summary

We considered the contributions of family non-

universal Z′ models with flavor-changing neutral cur-

rents (Z′ FCNC) at tree level in B→K(∗)l+l− decays.

By requiring that the theoretically predicted branch-

ing ratios agree with the current experimental data
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within two σ’s, we obtain the constraints on the cou-

plings in the Z′ FCNC model. We find that within

the allowed parameter space, our model has the po-

tential to explain the forward-backward asymmetry

of the B→K∗l+l− decay, as better determined by the

Belle Collaboration recently. Moreover, our Z′ model

contributions flip the signs of Ceff
9 and C10, which

differs from the usual new physics contributions that

flip the sign of Ceff
7 . Using the constraints, we also

compute the branching ratio of the Bs →µ
+
µ

− decay.

The upper bound of our prediction is near the upper

bound given by the CDF Collaboration.

C.-W. C. would like to thank the hospitality of

IHEP, Beijing, where this project was initiated, dur-

ing his visit.

Appendix A

Functions for the leptonic and hadronic part

L(L,0) = 2
√

q2 sinθ1, (A1)

L(L,+) = −2
√

2
√

q2 sin2 θ1

2
eiφ

, (A2)

L(L,−) = −2
√

2
√

q2 cos2
θ1

2
e−iφ

, (A3)

L(R,0) = −2
√

q2 sinθ1, (A4)

L(R,+) = −2
√

2
√

q2 cos2
θ1

2
eiφ

, (A5)

L(R,−) = −2
√

2
√

q2 sin2 θ1

2
e−iφ

. (A6)

H(L,0) =
iGFVtbV ∗

tsαem

8
√

2πmK∗

√

q2

{

2(C7L−C7R)mb

[

λT3(q
2)

m2
B−m2

K∗

−
(

3m
2
K∗ +m

2
B−q

2
)

T2(q
2)

]

+(Ceff
9 −C10)

[

(mB +mK∗)(m2
K∗ −m

2
B +q

2)A1(q
2)+

λA2(q
2)

(mB +mK∗)

]}

, (A7)

H(L,+) =
iGFVtbV ∗

tsαem

4
√

2πq2

{

2(C7L +C7R)mb

√
λT1(q

2)−2(C7L−C7R)mb(m2
B−m

2
K∗)T2(q

2)

+(Ceff
9 −C10)q

2

[
√

λV (q2)

(mB +mK∗)
− (mB +mK∗)A1(q

2)

]}

, (A8)

H(L,−) =
iGFVtbV ∗

tsαem

4
√

2πq2

{

−2(C7L +C7R)mb

√
λT1(q

2)−2(C7L−C7R)mb(m
2
B−m

2
K∗)T2(q

2)

+(Ceff
9 −C10)q

2

[

−

√
λV (q2)

(mB +mK∗)
− (mB+mK∗)A1(q

2)

]}

, (A9)

H(R,0) =
iGFVtbV ∗

tsαem

8
√

2πmK∗

√

q2

{

2(C7L−C7R)mb

[

λT3(q
2)

m2
B−m2

K∗

−
(

3m
2
K∗ +m

2
B−q

2)
T2(q

2)

]

+(Ceff
9 +C10)

[

(mB +mK∗)(m2
K∗ −m

2
B +q

2)A1(q
2)+

λA2(q
2)

(mB +mK∗)

]

}

, (A10)
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H(R,+) =
iGFVtbV ∗

tsαem

4
√

2πq2

{

2(C7L +C7R)mb

√
λT1(q

2)−2(C7L−C7R)mb(m2
B−m

2
K∗)T2(q

2)

+(Ceff
9 +C10)q

2

[
√

λV (q2)

(mB +mK∗)
− (mB +mK∗)A1(q

2)

]}

, (A11)

H(R,−) =
iGFVtbV ∗

tsαem

4
√

2πq2

{

−2(C7L +C7R)mb

√
λT1(q

2)−2(C7L−C7R)mb(m2
B−m

2
K∗)T2(q

2)

+(Ceff
9 +C10)q

2

[

−

√
λV (q2)

(mB +mK∗)
− (mB +mK∗)A1

(

q
2)

]}

. (A12)
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