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1 Introduction

The study of a molecular state composed of heavy

flavor mesons has been an interesting and important

research topic. In 1976, Voloshin and Okun first stud-

ied molecular systems with charmed quarks [1]. In

Ref. [2], De Rujula, Georgi and Glashow proposed

ψ(4040) as a D∗D̄∗ molecular charmonium. By using

the quark-pion interaction model, Tönqvist carried

out the study of DD̄∗ and D∗D̄∗ [3, 4]. The obser-

vations of X(3872), three charged charomonium-like

states Z+(4350), Z+
1 (4050), Z+(4250) and Y(4140),

Y(4274) etc. again inspired theorists’ interest in the

molecular system composed of a charmed meson pair

(see Refs. [5–35] for details).

The newly observed charged bottomonium-like

structures Zb(10610) and Zb(10650) were reported by

the Belle collaboration [36]. Before these observa-

tions of Zb, the analysis presented in Refs. [31, 32]

indicated that there probably exists a loosely bound

S-wave BB̄∗ molecular state. The observed Zb(10610)

gives direct support to the prediction in Refs. [31,

32] since Zb(10610) is near the BB̄∗ threshold and

with IG(JP ) = 1+(1+). After the observations of

Zb(10610) and Zb(10650), many theoretical groups

carried out the study to reveal the underlying struc-

ture of Zb(10610) and Zb(10650) [37–44]. Among dif-

ferent explanations of Zb(10610) and Zb(10650), BB̄∗

and B∗B̄∗ molecular state assignments to Zb(10610)

and Zb(10650) respectively are popular. In our re-

cent work [45], we have studied the interaction of the

BB̄∗ and B∗B̄∗ systems in the framework of the one-

boson-exchange (OBE) model, where we consider the

S-wave and D-wave mixing. Our result indicates that

Zb(10610) and Zb(10650) can be explained as the BB̄∗

and B∗B̄∗ molecular states quite naturally [45].

Besides the study of these BB̄∗ and B∗B̄∗ systems

directly corresponding to Zb(10610) and Zb(10650)

[45], a more comprehensive and systematic study of

BB̄∗ and B∗B̄∗ systems is necessary to provide more

valuable information for future experimental searches

for these exotic states. Thus, by using the same tech-

nique as that proposed in Ref. [45], in this work we

perform the systematical dynamical calculation of
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BB̄∗ and B∗B̄∗ systems. Additionally, we also ex-

tend the formulism to study the DD̄∗ and D∗D̄∗ sys-

tems, which can be relevant to many charmonium-like

states such as X(3872), Y(3930).

This paper is organized as follows. After the in-

troduction, we present the formalism of the study of

the BB̄∗ and B∗B̄∗ systems, which includes the rele-

vant effective Lagrangian and coupling constants, the

derivation of the effective potential of the BB̄∗ and

B∗B̄∗ system, the numerical results, etc. Finally, the

paper ends with the discussion and conclusion.

2 Deduction of effective potential

2.1 Flavor wave function

We list the flavor wave functions of the BB̄∗ and

B∗B̄∗ systems constructed in Refs. [34, 35]. The

BB̄∗ systems can be categorized as the isovector and

isoscalar states with the corresponding flavor wave

functions




|Z(T)

BB̄∗

+〉 =
1√
2

(
|B∗+B̄0〉+c|B+B̄∗0〉

)
,

|Z(T)

BB̄∗

−〉 =
1√
2

(
|B∗−B̄0〉+c|B−B̄∗0〉

)
,

|Z(T)

BB̄∗

0〉 =
1

2

[(
|B∗+B−〉−|B∗0B̄0〉

)

+c
(
|B+B∗−〉−|B0B̄∗0〉

)]
,

(1)

|Z(S)0

BB̄∗
〉 =

1

2
[(|B∗+B−〉+ |B∗0B̄0〉)

+c|(B+B∗−〉+ |B0B̄∗0)〉], (2)

where c = ± corresponds to C-parity C = ∓ respec-

tively [34, 35]. The flavor wave functions of the B∗B̄∗

systems can be constructed as




|Z(T)

B∗B̄∗
[J ]+〉 = |B∗+B̄∗0〉,

|Z(T)

B∗B̄∗
[J ]−〉 = |B∗−B̄∗0〉,

|Z(T)

B∗B̄∗
[J ]0〉 =

1√
2

(
|B∗+B∗−〉−|B∗0B̄∗0〉

)
(3)

for the isovector states, and
∣∣∣Z(S)

B∗B̄∗
[J ]0

〉
=

1√
2

(
|B∗+B∗−〉+ |B∗0B̄∗0〉

)
, (4)

for the isoscalar state. In the above expressions, the

superscripts T and S in Eqs. (1)–(4) are applied to

distinguish the isovector and isoscalar states, respec-

tively. The total angular momentum of the S-wave

B∗B̄∗ systems is J=0, 1, 2. Thus, we use the extra

notation [J ] in Eqs. (3)–(4) to distinguish the B∗B̄∗

systems with different total angular momentum J .

Belle indicates that both Zb(10610) and Zb(10650)

belong to the isotriplet states. If Zb(10610) and

Zb(10650) are the BB̄∗ or B∗B̄∗ molecular states re-

spectively, they should correspond to Z (T)

BB̄∗
and Z(T)

B∗B̄∗

[1] in Eqs. (1) and (3), respectively. Since Zb(10610)0

is of C-odd parity, i.e., C = −1, thus the coefficient

c = +1 is taken in Eq. (1). The choice of the coef-

ficient c = −1 and C = +1 leads to X(3872) and its

partners, where X(3872) corresponds to Z (S)

DD̄∗

′
listed

in Table. 1.

In Table 1, we summarize the quantum numbers

of the states when we discuss whether there exist the

BB̄∗ and B∗B̄∗ molecular states. Moreover, we ex-

tend the same formalism to study the DD̄∗ and D∗D̄∗

systems, where the flavor wave function of the DD̄∗

and D∗D̄∗ systems can be obtained with replacement

B(∗) → D̄(∗) and B̄(∗) →D(∗).

Table 1. A summary of the BB̄∗, B∗B̄∗, DD̄∗,

D∗D̄∗ systems. If taking c = −1 in Eqs. (1)

and (2), we obtain the flavor wave functions

of Z
(T)

BB̄∗

′
and Z

(S)

BB̄∗

′
, which are the partners of

Z
(T)

BB̄∗
and Z

(S)

BB̄∗
respectively.

BB̄∗/B∗B̄∗ DD̄∗/D∗D̄∗ IG(JPC)

Z
(T)

BB̄∗
Z

(T)

DD̄∗
1+(1+)

Z
(S)

BB̄∗
Z

(S)

DD̄∗
0−(1+−)

Z
(T)

B∗B̄∗
[J] Z

(T)

D∗D̄∗
[J] 1−(0+),1−(2+),1+(1+)

Z
(S)

B∗B̄∗
[J] Z

(S)

D∗D̄∗
[J] 0+(0++),0+(2++),0−(1+−)

Z
(T)′

BB̄∗
Z

(T)′

DD̄∗
1−(1+)

Z
(S)′

BB̄∗
Z

(S)′

DD̄∗
0+(1++)

2.2 Effective Lagrangian and coupling con-

stant

In the frame work of the OBE model, we study the

interaction of BB̄∗ or B∗B̄∗ system. Thus, we adopt

the effective Lagrangian approach. Thus, the effec-

tive Lagrangians relevant to our calculation include

[24, 46–51]

LHHP = ig〈H (Q)
b γµAµ

baγ5H̄
(Q)
a 〉

+ig〈H̄(Q̄)
a γµAµ

abγ5H
(Q̄)
b 〉, (5)

LHHV = iβ〈H(Q)
b vµ(Vµ

ba−ρµ

ba)H̄
(Q)
a 〉

+iλ〈H(Q)
b σµνF µν(ρ)H̄(Q)

a 〉

−iβ〈H̄(Q̄)
a vµ(Vµ

ab−ρµ

ab)H
(Q̄)
b 〉

+iλ〈H(Q̄)
b σµνF ′µν(ρ)H̄(Q̄)

a 〉, (6)

LHHσ = gs〈H(Q)
a σH̄(Q)

a 〉+gs〈H̄(Q̄)
a σH(Q̄)

a 〉, (7)
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where the multiplet field H (Q) is composed of the

pseudoscalar P and vector P∗ with P(∗)T = (D(∗)0,

D(∗)+) or (B(∗)−, B̄(∗)0). And H(Q) and H̄(Q) are de-

fined by

H(Q)
a =

1+/v

2
[P∗

aµγµ−Paγ5], (8)

H̄(Q)
a = [P∗†

aµγµ +P†
aγ5]

1+/v

2
. (9)

Here, H̄ = γ0H
†γ0 and v = (1,0).

As given in Refs. [24, 52], the anti-charmed

or bottom meson fields P̃(∗)T = (D̄(∗)0,D(∗)−) or

(B(∗)+,B(∗)0) satisfy

P̃ ∗
aµ =−CP ∗

aµC−1, P̃a = CPaC−1. (10)

The multiplet field H (Q̄) with the heavy antiquark

can be defined as

H(Q̄)
a = C(CH (Q)

a C−1)TC−1

= [P̃ ∗µ
a γµ− P̃aγ5]

1−/v

2
, (11)

H̄(Q̄)
a =

1−/v

2
[P̃ ∗µ

a γµ + P̃aγ5]. (12)

If considering the following charge conjugation

transformation,

CξC−1 = ξT,CVµC−1 =−VT
µ ,

CAµC−1 =AT
µ ,CρµC−1 =−ρµT, (13)

one obtains the Lagrangian relevant to the mesons

with heavy antiquark Q̄, which is converted from

the one related to the meson with heavy quark

Q, where the Lagrangians are given in Eqs. (5)–

(7) [24, 52]. In the above expressions, the

P(P̃) and P∗(P̃∗) satisfy the normalization rela-

tions 〈0|P|Qq̄(0−)〉 = 〈0|P̃|Q̄q(0−)〉 =
√

MP and

〈0|P∗
µ|Qq̄(1−)〉 = 〈0|P̃∗

µ|Q̄q(1−)〉 = εµ

√
MP∗ . The ax-

ial current is Aµ =
1

2
(ξ† ∂µ ξ− ξ ∂µ ξ†) =

i

fπ

∂µ P+ · · ·
with ξ = exp(iP/fπ) and fπ = 132 MeV. ρµ

ba =

igVV
µ

ba/
√

2, Fµν(ρ) = ∂µ ρν −∂ν ρµ+[ρµ, ρν ], F ′
µν(ρ) =

∂µ ρν−∂ν ρµ−[ρµ, ρν ] and gV = mρ/fπ, with gV = 5.8.

Here, P and V are two by two pseudoscalar and vector

matrices

P =




1√
2
π0 +

η√
6

π+

π− − 1√
2
π0 +

η√
6


 , (14)

V =




ρ0

√
2

+
ω√
2

ρ+

ρ− − ρ0

√
2

+
ω√
2


 . (15)

By expanding Eqs. (5)–(7), one further obtains

the effective Lagrangian of the light pseudoscalar

mesons P with the heavy flavor mesons

LP∗P∗P = −i
2g

fπ

εαµνλvαP∗µ
b P∗λ†

a ∂ν
Pba

+i
2g

fπ

εαµνλvαP̃∗µ†
a P̃∗λ

b ∂ν
Pab, (16)

LP∗PP = −2g

fπ

(PbP∗†
aλ +P∗

bλP†
a)∂λ

Pba

+
2g

fπ

(P̃∗†
aλP̃b + P̃†

a P̃∗
bλ)∂λ

Pab. (17)

The effective Lagrangian depicting the coupling

of the light vector mesons V and heavy flavor mesons

reads as

LPPV = −
√

2βgVPbP†
av ·Vba

+
√

2βgVP̃†
a P̃bv ·Vab, (18)

LP∗PV = −2
√

2λgVvλελµαβ(PbP∗µ†
a

+P∗µ

b P†
a)(∂

α
V

β)ba

−2
√

2λgVvλελµαβ(P̃∗µ†
a P̃b

+P̃†
a P̃∗µ

b )(∂α
V

β)ab, (19)

LP∗P∗V =
√

2βgVP∗
b ·P∗†

a v ·Vba

−i2
√

2λgVP∗µ
b P∗ν†

a (∂µ Vν −∂ν Vµ)ba

−
√

2βgVP̃∗†
a · P̃∗

bv ·Vab

−i2
√

2λgVP̃∗µ†
a P̃∗ν

b (∂µ Vν −∂ν Vµ)ab.

(20)

The effective Lagrangian of the scalar meson σ

interacting with the heavy flavor mesons can be ex-

pressed as

LPPσ = −2gsPbP†
bσ−2gsP̃bP̃†

bσ, (21)

LP∗P∗σ = 2gsP∗
b ·P∗†

b σ+2gsP̃∗
b · P̃∗†

b σ. (22)

As shown in Eqs. (16)–(20), the terms for the in-

teractions between the anti-heavy flavor mesons and

light mesons can be obtained by taking the following

replacements in the corresponding terms for the in-

teractions between the heavy flavor mesons and light

mesons:

v→−v, a→ b, b→ a,

P∗
µ →P̃∗†

µ , P →−P̃†,

P∗†
µ →P̃∗

µ, P† →−P̃.
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g = 0.59 is extracted from the experimental width

of D∗+ [53]. The parameter β relevant to the vector

meson can be fixed as β = 0.9 by the vector meson

dominance mechanism while λ = 0.56 GeV−1 was ob-

tained by comparing the form factor calculated by the

light cone sum rule with the one obtained by lattice

QCD. As the coupling constant related to the scalar

meson σ, gs = gπ/(2
√

6) with gπ = 3.73 was given in

Refs. [35, 51].

2.3 Effective potential

With the above preparation, we deduce the ef-

fective potentials of the BB̄∗ and B∗B̄∗ systems in

the following. Generally, the scattering amplitude

iM(J,JZ) is related to the interaction potential in the

momentum space in terms of the Breit approximation

VB(∗)B̄(∗)

E (q) = −M(B(∗)B̄(∗) →B(∗)B̄(∗))√∏
i
2Mi

∏
f
2Mf

,

where Mi and Mj denote the masses of the initial and

final states respectively. The potential in the coor-

dinate space V(r) is obtained after performing the

Fourier transformation

VB(∗)B̄(∗)

E (r) =

∫
dp

(2π)3
eip·rVB(∗)B̄(∗)

E (q)F2(q2,m2
E),

(23)

where we need to introduce the monopole form fac-

tor (FF) F(q2,m2
E) = (Λ2−m2

E)/(Λ2−q2) to reflect

the structural effect of the vertex of the heavy mesons

interacting with the light mesons. mE denotes the ex-

change meson mass. For q2 → 0 we can treat FF as a

constant while for Λ�m FF approaches unity. The

behavior of FF indicates [34] (1) when the distance

becomes infinitely large, the interaction vertex looks

like a perfect point corresponding to the constant FF;

(2) when the distance is very small, the inner struc-

ture will manifest itself. In reality, the phenomeno-

logical cutoff Λ is around one to several GeV, which

also plays the role of regulating the effective potential.

In this work, we consider both S-wave and D-

wave interactions between B(∗) and B̄(∗) mesons. In

general, the BB̄∗ and B∗B̄∗ states can be expressed

as

|Z(α)(′)

BB̄∗
〉 =

(
|BB∗(3S1)〉
|BB∗(3D1)〉

)
, (24)

|Z(α)

B∗B̄∗
[0]〉 =

(
|B∗B̄∗(1S0)〉
|B∗B̄∗(5D0)〉

)
, (25)

|Z(α)

B∗B̄∗
[1]〉 =




|B∗B̄∗(3S1)〉
|B∗B̄∗(3D1)〉
|B∗B̄∗(5D1)〉


 , (26)

|Z(α)

B∗B̄∗
[2]〉 =




|B∗B̄∗(5S2)〉
|B∗B̄∗(1D2)〉
|B∗B̄∗(3D2)〉
|B∗B̄∗(5D2)〉




(27)

with α=S, T, where we use the notation 2S+1LJ to

denote the total spin S, angular momentum L, total

angular momentum J of the BB̄∗ or B∗B̄∗ system.

Indices S and D indicate that the couplings between

B∗ and B̄∗ occur via the S-wave and D-wave interac-

tions, respectively.

Thus, the total effective potentials of the BB̄∗ and

B∗B̄∗ systems are

V
Z

(α)(′)

BB̄∗

Total

=
〈
Z(α)(′)

BB̄∗

)∣∣∣
∑

E=π,η,σ,ρ,ω

VBB̄∗

E (r)
∣∣Z(α)(′)

BB̄∗

〉
, (28)

V
Z

(α)

B∗B̄∗
[J]

Total

=
〈
Z(α)

B∗B̄∗
[J]
)∣∣∣

∑

E=π,η,σ,ρ,ω

VB∗B̄∗

E (r)
∣∣Z(α)

B∗B̄∗
[J ]
〉
,

(29)

which are 2×2 and (J +2)×(J +2) matrices respec-

tively. We impose the following constraint
∣∣∣BB̄∗(2S+1

LJ

)〉
=

∑

m,mL,mS

CJM
1m,LmL

εm
n YLmL

,

(30)

∣∣∣B∗B̄∗(2S+1
LJ

)〉

=
∑

m,m′,mL,mS

CJM
SmS ,LmL

CSmS

1m,1m′ ε
m′

n′ εm
n YLmL

, (31)

to the effective potential obtained from the scat-

tering amplitude. CJM
1m,LmL

, CJM
SmS ,LmL

and CSmS

1m,1m′

are the Clebsch-Gordan coefficients. YLmL
is the

spherical harmonics function. The polarization vec-

tor for the vector heavy flavor meson is defined as

εm
± =∓ 1√

2
(εm

x ± iεm
y ) and εm

0 = εm
z . Here, the polariza-

tion vector in Eqs. (30)–(31) is just the one appear-

ing in the effective potentials, which will be presented

later.

2.3.1 The BB̄∗ system

We obtain the general expressions of the total ef-

fective potentials of the isoscalar and isovector BB̄∗
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systems [45], i.e.,

VZ
(T)(′)

BB̄∗ = V Direct
σ

− 1

2
V Direct

ρ
+

1

2
V Direct

ω
+

c

4

(
−2V Cross

π

+
2

3
V Cross

η
−2V Corss

ρ
+2V Cross

ω

)
, (32)

VZ
(S)(′)

BB̄∗ = V Direct
σ

+
3

2
V Direct

ρ
+

1

2
V Direct

ω
+

c

4

(
6V Cross

π

+
2

3
V Cross

η
+6V Corss

ρ
+2V Corss

ω

)
, (33)

where the subpotentials from the π, η, σ, ρ and ω

meson exchanges are expressed as [45]

V Cross
π

= − g2

f 2
π

[
1

3
(ε2 ·ε†

3)Z(Λ2,m2, r)

+
1

3
S(r̂,ε2,ε

†
3)T (Λ2,m2, r)

]
, (34)

V Cross
η

= − g2

f 2
π

[
1

3
(ε2 ·ε†

3)Z(Λ3,m3, r)

+
1

3
S(r̂,ε2,ε

†
3)T (Λ3,m3, r)], (35)

V Direct
σ

= −g2
s (ε2 ·ε†

4)Y (Λ,mσ, r), (36)

V Direct
ρ

= −1

2
β2g2

V(ε2 ·ε†
4)Y (Λ,mρ, r), (37)

V Cross
ρ

= 2λ2g2
V

[
2

3
(ε2 ·ε†

3)Z(Λ0,m0, r)

−1

3
S(r̂,ε2,ε

†
3)T (Λ0,m0, r)

]
, (38)

V Direct
ω

= −1

2
β2g2

V(ε2 ·ε†
4)Y (Λ,mω, r), (39)

V Cross
ω

= 2λ2g2
V

[
2

3
(ε2 ·ε†

3)Z(Λ1,m1, r)

−1

3
S(r̂,ε2,ε

†
3)T (Λ1,m1, r)

]
. (40)

In these obtained effective potentials, Λ2
i and m2

i are

defined as

Λ2
2 = Λ2−(mB∗ −mB)2, m2

2 = m2
π
−(mB∗ −mB)2,

Λ2
3 = Λ2−(mB∗ −mB)2, m2

3 = m2
η
−(mB∗ −mB)2,

Λ2
0 = Λ2−(mB∗ −mB)2, m2

0 = m2
ρ
−(mB∗ −mB)2,

Λ2
1 = Λ2−(mB∗ −mB)2, m2

1 = m2
ω
−(mB∗ −mB)2,

and S(r̂, a, b) is expressed as S(r̂, a, b) = 3(r̂·a)(r̂·
b)−a · b. Additionally, we also define the functions

Y (Λ, m, r), Z(Λ, m, r) and T (Λ, m, r) with the

expressions

Y (Λ,mE, r) =
1

4πr
(e−mE r −e−Λr)− Λ2−m2

E

8πΛ
e−Λr,

(41)

Z(Λ,mE, r) = ∇2Y (Λ,mE, r)

=
1

r2

∂
∂r

r2 ∂
∂r

Y (Λ,mE, r), (42)

T (Λ,mE, r) = r
∂

∂r

1

r

∂
∂r

Y (Λ,mE, r). (43)

In Eqs. (32)–(33), c = +1 corresponds to the Z (T)

BB̄∗

and Z(S)

BB̄∗
states including these two charged Zb states

observed by Belle Collaboration while taking c =−1

corresponds to the Z(T)′

BB̄∗
and Z(S)′

BB̄∗
states which are

partner states of X(3872).

As indicated in Eq. (27), we consider both S-

wave and D-wave interactions between the B and B̄∗

mesons. Finally the total effective potential can be

obtained by making the replacement in the subpoten-

tials

(ε2 ·ε†
3)

(ε2 ·ε†
4)





�

(
1 0

0 1

)
, (44)

S(r̂,ε2,ε
†
3) �

(
0 −

√
2

−
√

2 1

)
, (45)

which results in the total effective potential of the

BB̄∗ system, i.e, a two by two matrix.

The effective potential of the DD̄∗ system is sim-

ilar to that of the BB̄∗ system. The η, σ, ρ and ω

meson exchange potentials of DD̄∗ system can be eas-

ily obtained by replacing the parameters for the BB̄∗

system with the ones for the DD̄∗ system. Since the

mass gap of m∗
D and mD is larger than the mass of π,

which is different from the case of the BB̄∗ system,

the π exchange potential of the DD̄∗ system is [34, 35]

V Cross
π

= − g2

f 2
π

[
1

3
(ε2 ·ε†

3)Z
DD∗

π
(Λ4,m4, r)

+
1

3
S(r̂,ε2,ε

†
3)T

DD∗

π
(Λ4,m4, r)

]
, (46)

where

Y DD∗

π
(Λ4,m4, r)

=
1

4πr

(
−e−Λ4r− r(Λ2

4 +m2
4)

2Λ4

e−Λ4r +cos(m4r)

)
,

(47)
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ZDD∗

π
(Λ4,m4, r) = ∇2Y DD∗

π
(Λ4,m4, r) =

1

r2

∂
∂r

r2 ∂
∂r

×Y DD∗

π
(Λ4,m4, r), (48)

TDD∗

π
(Λ4,m4, r) = r

∂
∂r

1

r

∂
∂r

Y DD∗

π
(Λ4,m4, r).

(49)

In the present case, the parameters Λ4 and m4 are

defined as

Λ4 =
√

Λ2−(mD∗ −mD)2, (50)

m4 =
√

(mD∗ −mD)2−m2
π
. (51)

2.3.2 The B∗B̄∗ system

For the isoscalar and isovector B∗B̄∗ systems, the

general expressions of the total effective potentials are

VZ
(T)(′)

B∗B̄∗ = Wσ−
1

2
Wρ +

1

2
Wω− 1

2
Wπ +

1

6
Wη,

(52)

VZ
(S)

B∗B̄∗

(′)

= Wσ +
3

2
Wρ +

1

2
Vω +

3

2
Wπ +

1

6
Wη,

(53)

respectively, where the π, η, σ, ρ and ω meson ex-

changes can contribute to the effective potentials.

The corresponding subpotentials are expressed as

Wπ = − g2

f 2
π

[
1

3
(ε1×ε

†
3) ·(ε2×ε

†
4)Z(Λ,mπ, r)

+
1

3
S(r̂,ε1×ε

†
3,ε2×ε

†
4)T (Λ,mπ, r)

]
, (54)

Wη = − g2

f 2
π

[
1

3
(ε1×ε

†
3) ·(ε2×ε

†
4)Z(Λ,mη, r)

+
1

3
S(r̂,ε1×ε

†
3,ε2×ε

†
4)T (Λ,mη, r)

]
, (55)

Wσ = −g2
s(ε1 ·ε†

3)(ε2 ·ε†
4)Y (Λ,mσ, r), (56)

Wρ = −1

4

{
2β2g2

V(ε1 ·ε†
3)(ε2 ·ε†

4)Y (Λ,mρ, r)

−8λ2g2
V

[
2

3
(ε1×ε

†
3) ·(ε2×ε

†
4)Z(Λ,mρ, r)

−1

3
S(r̂,ε1×ε

†
3,ε2×ε

†
4)T (Λ,mρ, r)

]}
, (57)

Wω = −1

4

{
2β2g2

V(ε1 ·ε†
3)(ε2 ·ε†

4)Y (Λ,mω, r)

−8λ2g2
V

[
2

3
(ε1×ε

†
3) ·(ε2×ε

†
4)Z(Λ,mω, r)

−1

3
S(r̂,ε1×ε

†
3,ε2×ε

†
4)T (Λ,mω, r)

]}
. (58)

Here, the definitions of Y (Λ, m, r), Z(Λ, m, r),

T (Λ, m, r) and S(r̂, a, b) are given in Sec. 2.3.1.

In this work, we consider both S-wave and D-wave

interactions between the B∗ and B̄∗ mesons, which are

illustrated in Eq. (27). Thus, the total effective po-

tential of the B∗B̄∗ with J = 0, 1, 2 is 2× 2, 3× 3,

4×4 matrices, which can be obtained by replacing the

corresponding terms in the subpotentials, i.e.,

(ε1 ·ε†
3)(ε2 ·ε†

4) �

(
1 0

0 1

)
, (59)

(ε1×ε
†
3) ·(ε2×ε

†
4) �

(
2 0

0 −1

)
, (60)

S(r̂,ε1×ε
†
3,ε2×ε

†
4) �

(
0

√
2√

2 2

)
(61)

for the B∗B̄∗ states with J = 0,

(ε1 ·ε†
3)(ε2 ·ε†

4) �




1 0 0

0 1 0

0 0 1


 , (62)

(ε1×ε
†
3) ·(ε2×ε

†
4) �




1 0 0

0 1 0

0 0 −1


 , (63)

S(r̂,ε1×ε
†
3,ε2×ε

†
4) �




0 −
√

2 0

−
√

2 1 0

0 0 1


 (64)

for the B∗B̄∗ states with J = 1, and

(ε1 ·ε†
3)(ε2 ·ε†

4) �




1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1




, (65)
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(ε1×ε
†
3) ·(ε2×ε

†
4) �




−1 0 0 0

0 2 0 0

0 0 1 0

0 0 0 −1




, (66)

S(r̂,ε1×ε
†
3,ε2×ε

†
4)

�




0

√
2

5
0 −

√
14

5
√

2

5
0 0 − 2√

7

0 0 −1 0

−
√

14

5
− 2√

7
0 −3

7




(67)

for the B∗B̄∗ states with J = 2.

The potentials of the D∗D̄∗ system and B∗B̄∗ sys-

tem have the same form. We only need to replace the

parameters for the B∗B̄∗ system with the ones for the

D∗D̄∗ system.

3 Numerical results

With the obtained effective potentials, we can

find the bound state solution by solving the coupled-

channel Schrödinger equation. Corresponding to the

systems in Eqs. (32)–(33), the kinetic terms for the

Z(α)′

BB̄∗
and Z(α)

B∗B̄∗
[J ] (J = 0,1,2) systems are

K
Z

(α)′

BB̄∗

= diag

(
− ∆

2m̃1

, − ∆2

2m̃1

)
, (68)

K
Z

(α)

B∗B̄∗
[0]

= diag

(
− ∆

2m̃2

, − ∆2

2m̃2

)
, (69)

K
Z

(α)

B∗B̄∗
[1]

= diag

(
− ∆

2m̃2

, − ∆2

2m̃2

, − ∆2

2m̃2

)
,

(70)

K
Z

(α)

B∗B̄∗
[2]

= diag

(
− ∆

2m̃2

, − ∆2

2m̃2

, − ∆2

2m̃2

, − ∆2

2m̃2

)
,

(71)

respectively. Here, ∆ =
1

r2

∂
∂r

r2 ∂
∂r

, ∆2 = ∆− 6

r2
.

m̃1 = mBmB∗/(mB +mB∗) and m̃2 = mB∗/2 are the

reduced masses of the Z(i)
b1 and Z(i)

b2 systems, where mB

and mB∗ denote the masses of the pseudoscalar and

vector bottom mesons [54], respectively. Of course,

the kinematic terms for the DD̄∗ and D∗D̄∗ systems

are of the same forms as those for the BB̄∗ and B∗B̄∗

systems, where we replace the mass of D(∗) with that

of B(∗).

In this work, the FESSDE program [55, 56] is

adopted to produce the numerical values for the bind-

ing energy and the relevant root-mean-square r with

the variation of the cutoff in the region of 0.8 6 Λ 6

5 GeV. Moreover, we also use MATSCE [57], a MAT-

LAB package for solving coupled-channel Schrödinger

equation, to perform an independent cross-check.

3.1 The BB̄
∗

and DD̄
∗

systems

In the following, we first present the numerical re-

sults for the Z(T)

BB̄∗
and Z(S)

BB̄∗
states where Z(T)

BB̄∗
corre-

sponds to Zb(10610) observed by Belle [36]. As shown

in Table 1, there exist two systems with c = −1 and

C = +1 in the flavor wave functions, marked as Z (T)′

BB̄∗

and Z(S)′

BB̄∗
.

1) In Table 2, we present the numerical results of

the obtained bound state solutions in both OME and

OPE cases. We find the bound state solutions for the

two isoscalar Z(S)

BB̄∗
and Z(S)′

BB̄∗
with reasonable Λ val-

ues (Λ∼ 1 GeV), which indicates the existence of the

Z
(S)

BB̄∗
and Z

(S)

BB̄∗

′
molecular states.

2) For the Z(T)

BB̄∗
state, we also find the bound state

solution with Λ around 2.2 GeV. Our result shows

that Z(T)

BB̄∗
could be a molecular state with a very shal-

low binding energy. In addition, its binding energy is

not strongly dependent on Λ. Thus, it is quite nat-

ural to interpret Zb(10610) as a BB̄∗ molecular state

with isospin I = 1.

3)For the Z(T)′

BB̄∗
system, the bound state solution

can be found in the region Λ > 4.7 GeV. To some ex-

tent, the value of Λ for the Z(T)′

BB̄∗
seems a little large

compared with 1 GeV.

4) We also discuss the case when we only consider

the OPE potential. For the {Z(T)

BB̄∗
, Z(T)′

BB̄∗
, Z(S)′

BB̄∗
} or

Z(S)

BB̄∗
, we need to decrease or increase the Λ value to

obtain the same binding energy as that from OME.

The one pion meson exchange potential indeed plays

the crucial role in the formation of the BB∗ bound

states.

We extend the formalism in Sec. 2 to study the

DD̄∗ systems. As shown in Table 3, we can exclude

the existence of the Z(T)

DD̄∗
and Z(T)′

DD̄∗
since we do not

find any bound state solution for the Z(T)

DD̄∗
and Z(T)′

DD̄∗

states. For the two isoscalar Z(S)

DD̄∗
and Z(S)′

DD̄∗
, there

exist loosely bound states with reasonable Λ values.

If only considering the OPE exchange potential, we

notice: (1) the bound state solution of the Z
(T )

DD̄∗
ap-

pears when Λ∼ 4.6 GeV, which largely deviates from
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1 GeV; (2) there is still no bound state solution for

Z(T)′

DD̄∗
; (3) for Z(S)

DD̄∗
and Z(S)′

DD̄∗
, Λ becomes larger in or-

der to find the bound state solution. The comparison

between the OME and OPE results also reflects the

importance of one pion exchange in the DD̄∗ systems.

We need to specify that Z
(S)′

DD̄∗
with 0+(1++) directly

corresponds to the observed X(3872) [58].

The BaBar Collaboration measured the radiative

decay of X(3872) and found a ratio of B(X(3872)→
ψ(2S)γ)/B(X(3872)→ J/ψγ) = 3.4± 1.4 [59], which

contradicts the prediction with a purely DD̄∗ molec-

ular assignment to X(3872) [9]. However, very re-

cently, Belle reported a new measurement of the

radiative decay of X(3872), where only the decay

mode X(3872)→ J/ψγ was observed and the upper

limit B(X(3872)→ ψ(2S)γ)/B(X(3872)→ J/ψγ) <

2.1 was given [60]. The inconsistence between the

Belle and BaBar results indicate that the study of

X(3872) is still an important research topic. Our nu-

merical results suggest that the mass of the loosely

bound molecular state Z(S)′

DD̄∗
is consistent with that

of X(3872). The assignment of X(3872) as a molecu-

lar candidate is still very attractive.

Table 2. The obtained bound state solutions (binding energy E and root-mean-square radius rRMS) for the

BB̄∗ systems. Here, we discuss two situations, i.e., including all one meson exchange (OME) contribution

and only considering one pion exchange (OPE) potential.

OME OPE
IG(JPC) state

Λ E/MeV rRMS/fm Λ E/MeV rRMS/fm

1+(1+) Z
(T)

BB̄∗
2.1 −0.22 3.05 2.2 −8.69 0.62

2.3 −1.64 1.31 2.4 −20.29 0.47

2.5 −4.74 0.84 2.6 −38.54 0.36

1−(1+) Z
(T)′

BB̄∗
4.9 −0.14 3.64 4.5 −17.79 0.56

5.0 −0.41 2.45 4.6 −22.65 0.52

5.1 −0.85 1.80 4.7 −28.29 0.48

0−(1+−) Z
(S)

BB̄∗
1.0 −0.28 3.35 1.8 −10.09 0.96

1.05 −1.81 1.71 1.9 −15.11 0.84

1.1 −5.36 1.18 2.0 −21.53 0.76

0+(1++) Z
(S)′

BB̄∗
0.8 −0.95 1.84 1.0 −7.68 0.82

0.9 −6.81 0.91 1.1 −15.30 0.65

1.0 −19.92 0.65 1.2 −26.53 0.53

Table 3. The obtained bound state solutions (binding energy E and root-mean-square radius rRMS) for the

DD̄∗ systems.

OME OPE
IG(JPC) state

Λ E/MeV rRMS/fm Λ E/MeV rRMS/fm

1+(1+−) Z
(T)

DD̄∗
— — — 4.6 −0.85 1.46

4.7 −3.42 1.17

4.8 −7.18 0.93

4.9 −12.40 0.75

1−(1++) Z
(T)′

DD̄∗
— — — — — —

0−(1+−) Z
(S)

DD̄∗
1.3 — — 3.4 −0.11 1.74

1.4 −1.56 1.61 3.5 −2.03 1.50

1.5 −12.95 0.98 3.6 −4.79 1.26

1.6 −35.73 0.69 3.7 −9.62 1.06

0+(1++) Z
(S)′

DD̄∗
1.1 −0.61 1.7 −3.01 1.37

1.2 −4.42 1.38 1.8 −7.41 1.06

1.3 −11.78 1.05 1.9 −14.15 0.84

1.4 −21.88 0.86 2 −23.82 0.68
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3.2 The B∗B̄
∗

and D∗D̄
∗

systems

The numerical results of the B∗B̄∗ systems are pre-

sented in Table 4, which include the obtained bind-

ing energy and the corresponding root-mean-square

radius. We find the bound state solution for all the

B∗B̄∗ states with reasonable Λ values:

1)A loosely bound state exists for Z (T)

B∗B̄∗ [1] cor-

responding to the observed Zb(10650) with Λ slightly

above 2 GeV. With only considering the OPE po-

tential, the obtained binding energy becomes deeper

with the same Λ value.

2) In addition, the B∗B̄∗ can form loosely bound

molecular states Z(S)

B∗B̄∗ [0], Z(T)

B∗B̄∗ [0], Z(S)

B∗B̄∗ [1] and

Z(S)

B∗B̄∗ [2] with very reasonable Λ values. Comparing

the results between OME and OPE cases, one no-

tices again that the one pion exchange indeed is very

important to form the B∗B̄∗ bound state.

3) For the Z(T)

B∗B̄∗ [2] state, the existence of the

loosely bound state requires the value of Λ around

4.4 GeV.

In the following, we also present the numerical re-

sults for the D∗D̄∗ systems in Table 5. Our calculation

indicates:

1) We find the bound state solutions for the three

isoscalar states Z(S)

D∗D̄∗
[0], Z(S)

D∗D̄∗
[1] and Z(S)

D∗D̄∗
[2],

where the corresponding Λ is around 1 GeV. If only

considering the OPE contribution for the Z (S)

D∗D̄∗
[0],

Z(S)

D∗D̄∗
[1] states, we need to largely increase the Λ

value in order to obtain a loosely bound state. Here,

either Z
(S)

D∗D̄∗
[0] or Z

(S)

D∗D̄∗
[2] could correspond to

the observed Y(3930) by Belle [61] and BABAR [62],

which is consistent with the conclusion in Ref. [31].

2) There does not exist the bound state Z (T)

D∗D̄∗
[2].

The value of Λ is about 3.6 GeV in order to form a

bound state Z(T)

D∗D̄∗
[0]. In the range 0.8 < Λ < 5 GeV,

we cannot find the bound state solution for Z (T)

D∗D̄∗
[1]

in the OME case. Thus, we exclude the existence of

the Z(T)

D∗D̄∗
[1] molecular state.

4 Conclusion

In this work, by the OBE model we systematically

carry out the dynamical study of the BB̄∗ and B∗B̄∗

systems, where both the S-wave and D-wave interac-

tions between the B(∗) and B̄∗ mesons are considered.

Besides Zb(10610) and Zb(10650) explained as B(∗)

and B̄∗ molecular states, respectively, we also predict

the existences of six other BB̄∗ and B∗B̄∗ bound

Table 4. The obtained bound state solutions (binding energy E and root-mean-square radius rRMS) for the

B∗B̄∗ systems.

OME OPE
IG(JPC) state

Λ E/MeV rRMS/fm Λ E/MeV rRMS/fm

1+(0+) Z
(T)
B∗B∗ [0] 1.2 — — 1 — —

1.4 −1.44 1.24 1.2 −0.32 1.53

1.6 −6.16 0.77 1.4 −5.69 0.78

1.8 −15.15 0.54 1.6 −18.82 0.50

0−(0+−) Z
(S)
B∗B∗ [0] 0.9 — — 1 — —

1 −0.81 2.11 1.2 −0.52 2.76

1.1 −9.98 1.02 1.4 −5.74 1.12

1.2 −35.16 0.70 1.6 −20.92 0.77

1+(1+) Z
(T)
B∗B∗ [1] 2.2 −0.81 1.38 2 −2.17 1.15

2.4 −3.31 0.95 2.2 −8.01 0.68

2.6 −7.80 0.68 2.4 −19.00 0.48

2.8 −14.94 0.52 2.6 −36.36 0.38

0−(1+−) Z
(S)
B∗B∗ [1] 1 −0.01 2.07 1.4 −0.51 1.90

1.1 −5.50 1.17 1.6 3.65 −1.32

1.2 −21.76 −0.75 1.8 −10.26 0.96

1.3 −53.68 0.55 2.0 −21.81 0.75

1+(2+) Z
(T)
B∗B∗ [2] 4.4 −0.44 1.59 3.6 −2.82 1.12

4.6 −1.59 1.28 3.8 −6.21 0.85

4.8 −3.42 1.01 4.0 −11.41 0.68

5 −6.16 0.81 4.2 −18.77 0.57

0−(2+−) Z
(S)
B∗B∗ [2] 0.8 −2.33 1.32 0.8 −1.81 1.48

0.9 −10.45 0.84 0.9 −5.64 1.01

1.0 −27.14 0.63 1.0 −12.28 0.76
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Table 5. The obtained bound state solutions (binding energy E and root-mean-square radius rRMS) for the

D∗D̄∗ systems.

OME OPE
IG(JPC) state

Λ E/MeV rRMS/fm Λ E/MeV rRMS/fm

1+(0+) Z
(T)
D∗D∗ [0] 3.6 −0.94 1.74 2.8 −2.03 1.47

3.8 −6.16 1.00 2.9 −6.10 1.00

4 −16.44 0.66 3 −12.51 0.74

4.2 −33.23 0.49 3.1 −21.56 0.59

0−(0+−) Z
(S)
D∗D∗ [0] 1.4 −1.72 1.62 3 −5.70 1.24

1.5 −17.98 0.88 3.1 −12.15 0.96

1.6 −54.60 0.47 3.2 −21.83 0.78

1+(1+) Z
(T)
D∗D∗ [1] — — — 4.7 −6.96 0.94

4.8 −12.29 0.73

4.9 −19.36 0.60

5 −28.31 0.51

0−(1+−) Z
(S)
D∗D∗ [1] 1.3 — 3.6 −9.91 1.01

1.4 −3.44 1.44 3.7 −15.25 0.87

1.5 −16.57 0.90 3.8 −22.07 0.76

1.6 −41.25 0.66 3.9 −30.53 0.68

1+(2+) Z
(T)
D∗D∗ [2] — — — — —

0−(2+−) Z
(S)
D∗D∗ [2] 1.1 −0.61 1.72 1.6 −3.89 1.28

1.2 −7.50 1.19 1.7 −9.64 0.98

1.3 −19.22 0.89 1.8 −18.38 0.77

1.4 −35.93 0.73 1.9 −30.71 0.64

Table 6. A summary of the BB̄∗, B∗B̄∗, DD̄∗, D∗D̄∗ systems. Here, we use X and × to mark the corresponding

systems with and without the bound states solution when taking a reasonable Λ value, respectively. The

criteria of the choice of the reasonable Λ may be strongly biased.

IG(JP ) system remark experiment [36] system remark experiment

1+(1+) Z
(T)

BB̄∗
X Zb(10610) Z

(T)

DD̄∗
×

0−(1+−) Z
(S)

BB̄∗
X Z

(S)

DD̄∗
X

1−(1+) Z
(T)

BB̄∗

′
× Z

(T)

DD̄∗

′
×

0+(1++) Z
(S)

BB̄∗

′
X Z

(S)

DD̄∗

′
X X(3872) [58]

1−(0+) Z
(T)

B∗B̄∗
[0] X Z

(T)

D∗D̄∗
[0] ×

0+(0++) Z
(S)

B∗B̄∗
[0] X Z

(S)

D∗D̄∗
[0] X Y (3930) [63–65]

1+(1+) Z
(T)

B∗B̄∗
[1] X Zb(10650) Z

(T)

D∗D̄∗
[1] ×

0−(1+−) Z
(S)

B∗B̄∗
[1] X Z

(S)

D∗D̄∗
[1] X

1−(2+) Z
(T)

B∗B̄∗
[2] × Z

(T)

D∗D̄∗
[2] ×

0+(2++) Z
(S)

B∗B̄∗
[2] X Z

(S)

D∗D̄∗
[2] X Y (3940) [63–65]

states (see Table 6) within the same framework. We

want to stress that the long-range interaction be-

tween the heavy meson pair arises from the one-pion-

exchange force, which is clearly known. This OPE

force alone is strong enough to form the above loosely

bound molecular states, which makes the present re-

sults quite model-independent and robust.

The observation of these Zb(10610) and Zb(10650)

states shows that the hidden-bottom decays are very

important decay channels. This is characteristic and

helpful to the search of the molecular bottomonium.

After taking into account the phase space [54, 63–

65] and the conservation of quantum number, the

Z(S)

BB̄∗
, Z(S)′

BB̄∗
, Z(T)

B∗B̄∗
[0], Z(S)

B∗B̄∗
[0], Z(S)

B∗B̄∗
[1] and Z(S)

B∗B̄∗

[2] molecular states can decay into

{
Υ(1S)η, Υ(2S)η, hb(1P )η, ηb(1S)ω

}
,

{
Υ(1S)ω, χb0(1P )η, χb1(1P )η, χb2(1P )η

}
,
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{
χb1(1P )π, χb1(2P )π, Υ(1S)ρ, ηb(1S)π

}
,

{
Υ(1S)ω, χb1(1P )η, ηb(1S)η

}
,

{
χb0(1P )ω, Υ(1S)η, Υ(2S)η, ηb(1S)ω, hb(1P )η

}
,

{
Υ(1S)ω, χb1(1P )η, χb2(1P )η, ηb(1S)η

}
,

respectively. The above modes can be used in the

future experimental search of the partner states of

Zb(10610) and Zb(10650).

We also extend our formalism to study the molec-

ular charmonia. The observed possible molecular

charmonia are listed in Table 6. The possible hidden-

charm decay channels of the molecular states Z (S)

DD̄∗
,

Z(S)

D∗D̄∗
[0], Z(S)

D∗D̄∗
[1] and Z(S)

D∗D̄∗
[2] are

{
ηc(1S)ω, J/ψ(1S)η

}
,

{
J/ψω, ηc(1S)η

}
,

{
ηc(1S)ω, J/ψ(1S)η

}
,

{
J/ψ(1S)ω, ηc(1S)η

}
,

respectively. Due to the limit of phase space, the

hidden-charm decays for the other one Z (S)′

DD̄∗
molecu-

lar state are J/ψ(1S) or ηc(1S) plus multi-pions.

References

1 Voloshin M B, Okun L B. JETP Lett., 1976, 23: 333

2 de Rujula A, Georgi H, Glashow S L. Phys. Rev. Lett.,

1977, 38: 317

3 Tornqvist N A. Nuovo Cim. A, 1994, 107: 2471

4 Tornqvist N A. Z. Phys. C, 1994, 61: 525

5 Close F E, Page P R. Phys. Lett. B, 2004, 578: 119

6 Voloshin M B. arXiv:hep-ph/0602233

7 WONG C Y. Phys. Rev. C, 2004, 69: 055202

8 Swanson E S. Phys. Lett. B, 2004, 588: 189

9 Swanson E S. Phys. Lett. B, 2004, 598: 197

10 Tornqvist N A. Phys. Lett. B, 2004, 590: 209

11 Suzuki M. Phys. Rev. D, 2005, 72: 114013

12 LIU X, LIU Y R, DENG W Z. arXiv:0802.3157

13 LIU Y R, ZHANG Z Y. arXiv:0805.1616

14 LIU Y R, ZHANG Z Y. Phys. Rev. C, 2009, 80: 015208

15 LIU Y R, ZHANG Z Y. Phys. Rev. C, 2009, 79: 035206

16 LIU Y R, Oka M, Takizawa M, LIU X, DENG W Z, ZHU

S L. Phys. Rev. D, 2010, 82: 014011

17 Thomas C E, Close F E. Phys. Rev. D, 2008, 78: 034007

18 Lee I W, Faessler A, Gutsche T, Lyubovitskij V E. Phys.

Rev. D, 2009, 80: 094005

19 MENG C, CHAO K T. arXiv:0708.4222

20 LIU X, LIU Y R, DENG W Z, ZHU S L. Phys. Rev. D,

2008, 77: 034003

21 LIU X, LIU Y R, DENG W Z, ZHU S L. Phys. Rev. D,

2008, 77: 094015

22 DING G J. arXiv:0711.1485

23 DING G J, HUANG W, LIU J F, YAN M L. Phys. Rev.

D, 2009, 79: 034026

24 DING G J. Phys. Rev. D, 2009, 79: 014001

25 DING G J, LIU J F, YAN M L. Phys. Rev. D, 2009, 79:

054005

26 DING G J. Eur. Phys. J. C, 2009, 64: 297

27 DING G J. Phys. Rev. D, 2009, 80: 034005

28 LIU X. Eur. Phys. J. C, 2008, 54: 471

29 SHEN L L, CHEN X L, LUO Z G, HUANG P Z, ZHU S

L, YU P F, LIU X. Eur. Phys. J. C, 2010, 70: 183

30 HU B, CHEN X L, LUO Z G, HUANG P Z, ZHU S L, YU

P F, LIU X. Chin. Phys. C (HEP & NP), 2011, 35: 113

31 LIU X, ZHU S L. Phys. Rev. D, 2009, 80: 017502

32 LIU X, LUO Z G, ZHU S L. Phys. Lett. B, 2011, 699: 341

33 YANG Z C, HE J, LIU X, ZHU S L. arXiv:1105.2901

34 LIU Y R, LIU X, DENG W Z, ZHU S L. Eur. Phys. J. C,

2008, 56: 63

35 LIU X, LUO Z G, LIU Y R, ZHU S L. Eur. Phys. J. C,

2009, 61: 411

36 Adachi I et al. (BELLE collaboration). arXiv:1105.4583

37 Bondar A E, Garmash A, Milstein A I, Mizuk R, Voloshin

M B. arXiv:1105.4473

38 CHEN D Y, LIU X, ZHU S L. arXiv:1105.5193

39 ZHANG J R, ZHONG M, HUANG M Q. arXiv:1105.5472

40 YANG Y, PING J L, DENG C, ZONG H S.

arXiv:1105.5935

41 Bugg D V. arXiv:1105.5492

42 Nieves J, Valderrama M P. arXiv:1106.0600

43 Danilkin I V, Orlovsky V D, Simonov Yu A.

arXiv:1106.1552

44 GUO T, CAO L, ZHOU M Z, CHEN H. arXiv:1106.2284

45 SUN Z F, HE J, LIU X, LUO Z G, ZHU S L. Phys. Rev.

D, 2011, 84: 054002

46 CHENG H Y, CHEUNG C Y, LIN G L, LIN Y C, YAN T

M, YU H L. Phys. Rev. D, 1993, 47: 1030

47 YAN T M, CHENG H Y, CHEUNG C Y, LIN G L, LIN Y

C, YU H L. Phys. Rev. D, 1992, 46: 1148

48 Wise M B. Phys. Rev. D, 1992, 45: 2188

49 Burdman G, Donoghue J F. Phys. Lett. B, 1992, 280: 287

50 Casalbuoni R, Deandrea A, Bartolomeo N Di, Gatto R,

Feruglio F, Nardulli G. Phys. Rept., 1997, 281: 145

51 Falk A F, Luke M E. Phys. Lett. B, 1992, 292: 119

52 Grinstein B, Jenkins E E, Manohar A V, Savage M J, Wise

M B. Nucl. Phys. B, 1992, 380: 369

53 Isola C, Ladisa M, Nardulli G, Santorelli P. Phys. Rev. D,

2003, 68: 114001

54 Nakamura K et al. (Particle Data Group). J. Phys. G, 2010,

37: 075021

55 Abrashkevich A G, Abrashkevich D G, Kaschiev M S,

Puzynin I V. Comput. Phys. Commun., 1995, 85: 65

56 Abrashkevich A G, Abrashkevich D G, Kaschiev M S,

Puzynin I V. Comput. Phys. Commun., 1998, 115: 90

57 Ledoux V, Daele M Van, Berghe G V, Comput. Phys. Com-

mun., 1998, 176: 191

58 Choi S K et al. (BELLE collaboration). Phys. Rev. Lett.,

2003, 91: 262001

59 Aubert B et al. (BABAR collaboration). Phys. Rev. Lett.,

2009, 102: 132001

60 Bhardwaj V et al. (BELLE collaboration). arXiv:1105.0177

61 Abe K et al. (BELLE collaboration). Phys. Rev. Lett.,

2005, 94: 182002

62 Aubert B et al. (BABAR collaboration). Phys. Rev. Lett.,

2008, 101: 082001

63 Aubert B et al. (BABAR collaboration). Phys. Rev. Lett.,

2008, 101: 071801

64 Aubert B et al. (BABAR collaboration). Phys. Rev. Lett.,

2009, 103: 161801

65 Adachi I et al. (BELLE collaboration). arXiv:1103.3419


