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A note on the soliton picture in a Skyrme-like model *
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Abstract: The role of the anti-commutator term of the chiral current in a Skyrme-like model was studied

associated with the symmetric Skyrmion and the nucleon properties in terms of the zero-mode quantization.

It is shown that the Skyrmion is stable only when the anti-commutator term in the model has a negative

coupling constant(−k
2) while a QCD functional analysis gives a positive coupling constant. This implies either

the coupling is negligibly small and negative, or the soliton picture for the baryons is beyond the approximation

of QCD at the level of the quark loop.
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1 Introduction

The soliton picture has been a successful descrip-

tion of the baryons at the phenomenological level, and

it occurs in many effective models of baryons, such

as the sigma model [1], the Skyrme model [2], the

chromo-dielectric soliton model [3], the chiral quark

soliton model [4] and the Nambu-Jona-Lasinio model

[5]. The solitons in these hadron descriptions can be

regarded as the dynamical and soft counterpart of the

bag in the MIT bag model that confines quarks in it,

and as such these solitons are hoped to be stable in

order to have a consistent description of hadrons as

a useful approximation to the confinement in QCD

(see Ref. [6] for review). However, the stability of

the soliton is not assured in priori and some enforc-

ing constraints are needed to associate with the chiral

symmetry breaking (CSB) and confinement. The typ-

ical examples of this are the “chiral circle” constraint

(σ2 +π
2 = f 2

π
) in the sigma model and the boundary

condition for the dielectric factor ε(σ) = {1,0} in the

chromo-dielectric soliton model mimicking the two

phases: the confining phase and asymptotic phase of

QCD.

In the case of the Skyrme model [2], which is the

effective field theory of QCD at a low-energy limit

[7], the Skyrmion (chiral) field U(x) approximates

the baryons by manifesting itself as the localized field

(soliton) made of mesonic cloud around the core of

baryon, carrying the nontrivial baryon number B,

and the similar constraint imposed is the condition

U = ±1 which corresponds to the chirally symmet-

ric and broken vacua, respectively. Despite the lim-

itation that the Skyrmion stability is not manifestly

ensured in the light of the effective chiral theory of

QCD [8], the progress on the Skyrmion description

to the few-body nucleus [9, 10] provides a sustainable

support for the Skyrme model in describing hadrons,

or an effective theory [11, 12] for baryon interaction

[13] as soon as the stable condition is fulfilled. This

indicates, in a sense, that the Skyrmion picture of

baryons can be a reliable description of the hadron at

the qualitative level [14].

In this work, we address the role of the anti-
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commutator term of the chiral current in a Skyrme-

like model associated with the Skyrmion stability and

the nucleon property predictions in terms of the zero-

mode quantization. It is shown that the Skyrmion is

stable only when the anti-commutator term of the

model has a negative coupling constant which is not

manifestly supported by the QCD functional analysis.

Considering that the model has fine-tunable param-

eters which can vary in a finite region, it infers that

either the choice of vanishing(or negligibly small and

negative) coupling for the anti-commutator term is

reasonable, or the soliton picture for the baryons is

beyond the chiral expansion approximation of QCD

up to the fourth derivative order, in consistence with

the demonstration by Simic [8].

2 The stability of the Skyrmion in a

Skyrme-like model

The SU(2) Skyrme-like model to be considered

reads [2]

LSK = −f 2
π

4
tr(LµLµ)+

ε2

4
tr[Lµ,Lν ]

2

−k2

4
tr[Lµ,Lν ]

2
+ +

m2
π

2
f 2

π
tr(U −1), (1)

where Lµ = U †∂µU is the left chiral current, U(x,t)∈
SU(2) the nonlinear realization of the chiral field de-

scribing the σ field and π mesons under the con-

straint U †U = 1, 2fπ the pion decay constant, and

ε a dimensionless constant characterizing nonlinear

coupling. Here, the last term associated with the

anti-commutator [Lµ,Lν ]+ ≡LµLν +LνLµ of the chi-

ral current, can be added to the standard Skyrme

model, in general, up to the fourth derivative terms,

and will be examined in detail in this paper.

The energy associated with (1) is

E = 4π

(

fπ

e

)∫
d3x

{

1

2
tr(∂i

U ∂i
U †)

− 1

16
tr[∂i

UU †,∂j
UU †]2

−K

16
tr[∂i

UU †,∂j
UU †]2+ +m2tr(1−U)

}

, (2)

with K = −k2/ε2 the reduced coupling, m = mπ/

(efπ) the mass parameter in the unit of efπ, and ∂i
the

derivatives in the unit of 1/efπ, in which e = 1/(
√

8ε).

We use notation La
j defined by U † ∂j U = iτaLa

j and

its dot product

Lj ·Lk = La
j L

a
k,

to rewrite Eq. (2) as

E =

(

πfπ

e

)[

E2 +
1

2
E4 +2m2Em

]

. (3)

Here

E2 =

∫
dxx2(Lj ·Lj),

E4 = E+
4 −KE−

4 ,

Em =

∫
dxx2tr(1−U),

(4)

with

E+
4 =

∫
dxx2 [(Lj ·Lj)(Lk ·Lk)−(Lj ·Lk)(Lj ·Lk)] ,

E−
4 =

∫
dxx2 [(Lj ·Lk)(Lj ·Lk)] .

(5)

In D-dimensianl space, a rescaling x→λx for (3)

yields the rescaled energy given by

E =

(

πfπ

e

)[

λ2−DE2 +
λ4−D

2
E4 +2m2Em

]

. (6)

The rescaling stability requires

dE

dλ

∣

∣

∣

∣

∣

λ=1

= 0,
d2E

dλ2

∣

∣

∣

∣

∣

λ=1

> 0,

which, in the case of (6), implies

(2−D)E2 = (D−4)
E4

2
,

(D2−5D+7)E2 > 0.

(7)

When D = 3, Eq. (7) becomes

E2 =
1

2
E4,E4 > 0, (8)

in which the first condition is nothing but the virial

theorem, and E2 > 0 is guaranteed by the inequality

L
2
j ≡ (Lj ·Lj) > 0. For the condition E4 > 0, one can

use the inequality

3(Lj ·Lk)
2
> (Lj ·Lj)

2
> (Lj ·Lk)

2, (9)

to rewrite it as

L
2
jL

2
k−(1+K)(Lj ·Lk)

2
> 0. (10)

Combining (10) with (9), one finds that the stability

condition (10) is fulfilled when

K 6 0. (11)

When ε2 > 0, as is the case in the standard Skyrme

model, the condition (11) implies

k2
> 0. (12)

We note that the stability condition (11) or (12) for

the Skyrmions is quite general and may change when
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the extra fourth-derivative terms are added in the

model (1). A typical term considered is

Le = k3tr(∂µ Lµ)2,

which introduces a new parameter into the condition

(10) and may change the stability condition. Adding

Le, the model (1) can be rewritten, in terms of U , as

LSK =
f 2

π

4
tr[∂µ U † ∂µ

U ]+
ε2−k2

2
tr[∂µ U † ∂ν

U ]2

+

(

k3−
ε2 +k2

2

)

tr[∂µ U † ∂µ
U ]2

−k3tr[(∂2
U †)(∂2

U)]+
m2

π

2
f 2

π
tr(U −1). (13)

Though this model (13) includes more terms

which happen in the chiral perturbation theory [15],

and thus it is linked directly to QCD at low energy,

the stability of the soliton in it can not be inferred

manifestly when the coefficients are constrained to

reconcile with QCD in its form of the derivative ex-

pansion of the chiral field up to the fourth order, as

will be discussed in Section 5 in detail.

3 The Skyrmions in the stable region

As usual, we search for the symmetric Skyrmion

using the hedgehog ansatz for the chiral field

U(x) = cosF (r)+ir̂ ·~τ sinF (r), (14)

with F (r) the radial chiral angle, subjected to the

boundary condition: F (0) = π, F (∞) = 0, and ~τ the

Pauli matrices. With (14), the static energy in (2)

becomes

MSK = π

∫
r2dr

{

f 2
π

[

F 2
r +2

sin2(F )

r2

]

+ε2

[

sin4(F )

(

16
sin2(F )

r2
+32F 2

r

)]

+k2

[

8F 2
r +16

sin4(F )

r4

]

+
2fπ

e
4m(1−cosF )

}

,

(15)

that is,

MSK = 2π

(

fπ

e

)∫∞
0

x2dx

[

F 2
x +

2

x2
sin2(F )(1+F 2

x )

+
sin4(F )

x4
− K

2

(

F 2
x +

2sin4(F )

x4

)

+2m2(1−cosF )

]

, (16)

where the dimensionless variable x = efπr and the

notation Fx ≡ dF/dx have been used.

The equation of motion for the model (16) is
(

1+2
sin2 F

x2
−3KF 2

x

)

Fxx +
2

x
Fx−2K

F 3
x

x

+
sin(2F )

x2

(

F 2
x −1+(K−1)

sin2 F

x2

)

= m2 sinF,

(17)

where only two parameters (K, m) are involved.

To study the stability through the profile solution

F (x) to Eq. (17), we consider two cases for the choice

of the reduced pian mass m, one is that the model is

chirally symmetric m = 0, and the other is that the

chiral symmetry of the model is broken down to the

physically interested value m = 0.526. The relaxation

procedure is applied to solve (17) numerically, with

the numerical Skyrmion profile shown in Fig. 1 for

the case of m = 0.526 and K =−0.2, in which the an-

alytical profile is also shown. The analytical solution

to approximate the Skyrmion is given by the profile

ansatz [16]

Fm(x) = 4warctan[exp(−cx)]

+π(1−w)

[

1−
(

sinh2(dmx)

a2 +sinh2(dmx)

)1/2
]

,

(18)

where m 6= 0, and (a, c, d, w) are the parameters

to be determined variationally, a is related to the in-

stanton scale λ through [17]

a =
2λ

1+λ2
. (19)

Given F (x) specified by (18), we fix the parameters

for K =−8.6, using the downhill simplex method to

(16), as described in Ref. [18]. The fixed parameters

are listed in Table 1. It is found that the best agree-

ment between the numerical and analytical profiles is

achieved for the case of K =−8.6, for which

w = 3.78847, c = 0.81208, d = 0.5125, a = 0.94223.

We further numerically solve (17) for the vari-

ous values of |K| and present in Fig. 2 the plot of

the profile for a set of typical values of |K|. It is

found by numerical calculations that the Skyrmion

is stable only when the effective coupling K (i. e.,

−k2) of the anti-commutator term in the model (2)

is negative(k2 > 0). To check this behavior, we use a

different initial setup for F (x) in the relaxation algo-

rithm, such as the Gaussian distribution and the kink

configuration, and the same result is achieved.
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Table 1. The calculated static property of nucleons calculated for nonzero K. The inputs are MN = 938.9,

M4=1232 (MeV), and mπ=138 MeV.

K −1.00 −3.00 −5.00 −8.60 −10.00

E(/(2fπ/e)) 49.697 58.233 79.061 99.548 106.75

M(/(6π
2fπ/e)) 1.678 1.967 2.670 3.362 3.605

2fπ/MeV 128.32 139.90 164.92 186.033 192.83

e 5.396 5.883 6.935 7.823 8.109

Λ 49.257 69.61 134.40 217.61 251.25

〈r2〉
1/2
I=0/fm 0.613 0.577 0.508 0.459 0.445

〈r2〉
1/2
I=0,M /fm 0.894 0.849 0.752 0.680 0.659

µp 1.897 1.862 1.804 1.767 1.757

µn −1.307 −1.341 −1.399 −1.436 −1.446

|µp/µn| 1.4512 1.389 1.289 1.230 1.215

Fig. 1. The numerical profile for the chiral an-

gle solved from (17) for m = 0.526 and K =

−0.2. The corresponding analytical solution

(18) for the same K is also shown.

Fig. 2. The numerical solutions to (17) are

shown for the different K.

By checking the available chiral angle profiles ob-

tained analytically and numerically, both done for

the different K > 0, using the previous method, we

find that the Skyrmion is stable only when the cou-

pling K(−k2) of the anti-commutator term is nega-

tive (K > 0). This agrees nicely with the stability

condition (11) or (12) in Section 2.

4 The static properties of nucleons as

solitons

The realistic prediction for the static properties

of nucleons using the Skyrmion obtained above re-

quires the quantization of the Skyrme model. This

can be done by semi-classically quantizing the spin-

ning modes of the Skyrme Lagrangian in terms of the

collective variables [11, 12]. To see how the predic-

tions vary in a Skyrme-like model (1) with K, we use

the obtained numerical hedgehog solution, obtained

for different K, to compute the static properties of

nucleons and nucleon-isobar (∆) in the framework of

the bosonic quantization of a soliton.

Choosing a SU(2)-variable A(t) as the collective

variables, and substituting U = A(t)U0(x)A(t)† into

(1), the action becomes, in the adiabatic limit,

L =−MSK+I0ΛTr

[

∂A

∂ t

∂A†

∂ t

]

, (20)

with MSK the soliton energy for the static hedgehog

Skyrmion, I0 = π/(3e3fπ), and

Λ = 8

∫∞
0

x2dxsin2 F [1+F 2
x +(1−K)sin2 F/x2]. (21)

The Hamiltonian associated with (20), when quan-

tized collectively, yields an eigenvalue 〈H〉 = M SK +

J(J + 1)/(2I0Λ). It follows that the masses of the

nucleon and ∆-isobar are

MN = MSK +
3

8I0Λ
,

M∆ = MSK +
15

8I0Λ
.

(22)
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Table 2. The static property of nucleons calculated for K =0. The inputs are MN = 938.9, M4 = 1232 (MeV),

and mπ=138 MeV.

quantities Ref. [11] Ref. [12] Num. Expt.

E(/(2fπ/e)) 36.5 – 39.143 –

M(/(6π
2fπ/e)) 1.233 – 1.3220 –

2fπ/MeV 129 108 112.643 186

e 5.45 4.84 4.7367 –

mπ 0 138(input) 138(input) 138

〈r2〉
1/2
I=0/fm 0.59 0.68 0.6621 0.72

〈r2〉
1/2
I=0,M /fm 0.92 0.95 0.9280 0.80

µp 1.87 1.97 1.945 2.79

µn −1.31 −1.24 −1.258 −1.91

|µp/µn| 1.43 1.59 1.546 1.46

As done in [12], we choose to adjust model parameters

(fπ, e) to fit the hadron masses, namely, the N, ∆,

and π masses through (22), where the other quantities

involved are given by (16) and (21). Our reports for

the computation of the static properties of baryons

are presented in Table 2, including the experimental

values as well as the results from Refs. [11, 12].

In the following, we also list the most relevant

formulas for our computations, for instance, the

isoscalar root mean square(r.m.s) radius and isoscalar

magnetic r.m.s radius,

〈r2〉1/2
I=0 =

1

efπ

{

− 2

π

x2 sin2 FFx

}1/2

,

〈r2〉1/2
M,I=0 =

1

efπ

{

� ∞
0

x4 sin2 FFxdx
� ∞
0

x2 sin2 FFxdx

}1/2

.

The magnetic moments for proton and neutron are

given by

µp,n = µI=0
p,n +µI=1

p,n =
〈r2〉I=0

9
MN(M∆−MN)

± MN

2(M∆−MN)
, (23)

where plus and minus correspond to proton and neu-

tron, respectively.

5 The Skyrmion-like action from the

QCD functional

It is well known that the low-energy version of

QCD is dictated by the spontaneous breaking of

the chiral symmetry in which the light pseudoscalar

mesons play a central role in the form of summarizing

the long-wavelength properties of the vacuum state.

This does not, however, manifestly justify the soli-

ton picture of the nucleons as a Skyrmion [8]. To

re-examine the soliton picture of the baryon, we con-

sider the parameters in the Skyrme-like model within

a QCD script in which the gluonic effects are reduced

to a background potential for the scalar excitations,

along the line of treatment by Simic [8], and Zahed

and Brown [13].

We start with the QCD generating functional in

the absence of the sources

ZQCD =

∫
[dq̄dqdGa

µdcdc̄] exp[i(SQCD +SFP +SGF)],

(24)

where SQCD is the QCD action in terms of the quark

field q(x) and gluon field Ga
µ(x), SFP is the Faddeev-

Popov action involving the ghost fields c and c̄, and

SGF is the gauge fixing term. As is known, the full

quantum calculation in terms of (24) remains notori-

ously involved. However, we know, at least from the

lattice QCD simulation and the QCD sum rules, that

the long-wavelength sector of QCD is well character-

ized by scalar quark and gluon condensates, e.g., 〈q̄q〉
and 〈GG〉, etc., so one can divide the field variables

in (24) into classes characterized by a certain vacuum

structure at low energy. Here, we use that of CSB re-

alized by the nonvanishing vacuum expectation value

of the quark bilinear q̄LqR and q̄RqL, by enforcing the

identification q̄LqR = σ†U and q̄RqL = U †σ with σ

a scalar meson matrix and U a unitary matrix such

that UU † = 1. Then, the QCD functional can be

extended to the integration over the the new fields

(σ,U) defined above. Following [13], we introduce

auxiliary fields of a scalar S(x) and a pseudoscalar

P (x), through

δ(q̄LqR−σU) =

∫
[dSdP ]

×exp
{

− i

∫
d4xtr[q̄L(S +iP )qR

−(S +iP )σ†U ]
}

, (25)
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with the usual definition for the left and right handed

quarks q̄L,R =
1

2
(1∓γ5)q. Putting (25) into (24) with

the delta function constraints and making the unitary

and anomaly-free change of the variable (S +iP ) →
U †(S +iP ), we get

ZQCD =

∫
[dq̄dqdGa

µdcdc̄][dUdσ][dSdP ]J [U ]

×exp{i(SQCD +SFP +SGF)

−i

∫
d4xtr[q̄U †

5 (S +iPγ5)q−2Sσ]}, (26)

where we have used the relation

tr{q̄LU †(S +iP )qR + q̄†
R(S− iP )UqL}

= tr[q̄U †
5 (S +iPγ5)q],

with

U †
5 =

1−γ5

2
U †+

1+γ5

2
U

= exp(iγ5π
a(x)λa/fπ). (27)

Let us consider the gluon and ghost parts of ZQCD

exp{iG[J ]} ≡
∫
[dGµdcdc̄]

×exp

{

i

∫
d4x

[

−Ga
µJµ,a− 1

2
trG2

µν

]}

×exp
{

i

∫
d4x[SGF[∂µ Gµ]

+SFP[∂µ DµGµ]]
}

,

which is a functional of the color current Ja
µ = gq̄γµλaq

and chirally invariant, G[JU ] = G[J ]. Following Cole-

man et al. [19], we assume G[J ] is dominated by an

effective potential of the quark bilinears

G[J ] = −
∫
d4x [VG(q̄q)+ · · ·]

≈ −
∫
d4x [VG(〈q̄q〉)+ · · ·]

= −
∫
d4x [VG(σ)+ · · ·] . (28)

Assuming (28) yields the functional (26) in the form

ZL
QCD =

∫
[dUdσ][dq̄dqdSdP ] exp{i

∫
d4x[q̄[i 6∂

−(m+U †
5 (S +iPγ5)]q

−VG(σ)+2tr(Sσ)]+lnJ [U ]}, (29)

in which the auxiliary fields (S, P ) are used to expo-

nentiate the delta-function constraints in (26).

Rotating to Euclidian space and integrating out

the quark variables yields (29) in the form

ZE
QCD = N−1

∫
[dSdP ][dUdσ]

×exp{Nctr ln( 6∂E +m+U †
5 (S +iPγ5))

×exp

{

−
∫
d4x[VG(σ)−2tr(Sσ)]− lnJ [U ]

}

.

(30)

In the large Nc limit, the functional (29) will be dom-

inated by the stationary phase (S, P, σ)= (S̄, P̄ , σ̄)

of the auxiliary fields. Here, P̄ = 0 because of the

parity conservation. One has then from (30)

ZE
QCD = N−1

∫
[dUdS] exp{Nctr ln( 6∂E +m+SU †

5 )

×exp

{

−
∫
d4x[VG(σ̄)−2tr(Sσ̄)]− lnJ [U ]

}

,

(31)

in which σ̄ is, using the saddle-point approximation,

determined by S̄ = (1/2)δVG(σ̄)/δσ̄.

Ignoring the imaginary part of the action func-

tional in (31), which is the non-local Wess-Zumino

term for fermions, we can rewrite the real part of the

action in (31) as

Sq =
Nc

2
tr ln | 6∂E +m+SU †

5 |2

=
Nc

2
tr ln[D2

M−m(6∂EU †
5 )+mS̄(U5 +U †

5 )]

=
Nc

2
tr ln(D2

M)+
Nc

2
tr ln[1+D−2

M (mS̄(U +U †)

−m(6∂EU †
5 ))], (32)

where D2
M ≡ −∂2

E +M 2, M 2 ≡ m2 + S̄2. Omitting

the first term in (32), which is the free contribution

to the effective potential and taking the derivative

expansion of (32), one finds, to the fourth order of

derivatives of U ,

SL =
Nc

2
tr ln[1+D−2

M mS̄(U +U †)]

+
Nc

2
tr ln[1−mD−2

M (6∂EU †
5 )]

=
Nc

2
tr[D−2

M mS̄(U +U †)]+S2q, (33)
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where

S2q =
Nc

2
tr ln[1−mD−2

M (6∂EU †
5 )]

= −Nc

4
tr[(mD−2

M (6∂EU †
5 ))2]

−Nc

8
tr[(mD−2

M (6∂EU †
5 ))4]+O(∂4

), (34)

owing to the fact that the odd powers in the expan-

sion series vanish (tr(γodd) = 0). Both (33) and (34)

are ultraviolet divergent, as can be explicitly seen in

the momentum representation. Using the proper time

regularization (or heat kernal method) with a momen-

tum cutoff Λ

D−2
M =

∫∞

1/Λ2

dse−sD2
M , (35)

we obtain

Nc

2
tr ln(D−2

M mS̄(U +U †))

=
Nc

2
mS̄

∫∞

1/Λ2

ds

∫
E

d4x〈x|e−sD2
Mtr(U +U †)|x〉

= 4NcDS

∫
E

d4xtr
[m

2
(U +U †)

]

, (36)

where

DS = S̄

∫∞

1/Λ2

ds

∫
E

d4k

(2π)4
e−s(k2+M2)

=
S̄

16π
2

∫∞

1/Λ2

ds

s2
e−sM2

=
Λ3

16π
2

(

S̄

Λ

)∫∞

1

ds

s2
e−s(M/Λ)2 .

With the help of (35) and a bit of algebra, we have

−Nc

4
tr[(mD−2

M (6∂EU †
5 ))2]

= −Ncm
2

16π
2

CM

∫
E

d4xtr
[

∂µ U † ∂µ
U

]

+
Ncm

2

16π
2

BM

∫
E

d4xtr
[

(∂2
U †)(∂2

U)
]

, (37)

and

−Nc

8
tr[(mD−2

M (6∂EU †
5 ))4]

= − Ncm
4

2 ·32π
2
QM

∫
E

d4xtr{2(∂µ U † ∂µ
U)2

−(∂µ U † ∂ν
U)2}

=
Ncm

4

2 ·32π
2
QM

∫
E

d4x
{

tr[Lµ,Lν ]
2−2tr(L2

µL2
ν)

}

,

(38)

in which

CM =
S̄

16π
2

∫∫∞

1/Λ2

dsdτ
e−M2(s+τ)

(s+τ)2

=
π

2

∫∞

1/Λ2

ds

s
e−

√
2s(M/Λ)2 , (39)

BM =

∫∞

1/Λ2

dsdτ
τe−M2(s+τ)

4s2

=
Λ2

M 4
e−(M/Λ)2

(

1+
M 2

Λ2

)∫∞

1

ds

s2
e−s(M/Λ)2 , (40)

QM =

∫∞

1/Λ2

4
∏

i=1

dsi

e−(Σisi)M
2

(Σisi)2

≈ 4π
2

Λ4

∫∞

1

dsse−s(M/Λ)2/
√

2. (41)

Putting (36), (37) and (38) together, one has a

Skyrme-like action for (32)

LSL =
Ncm

2

16π
2

CMtr
[

∂µ U † ∂µ
U

]

+
Ncm

4

64π
2

QM{tr[Lµ,Lν ]
2

−2tr(L2
µL2

ν)}+
Ncm

2

16π
2

BMtr
[

(∂2
U †)(∂2

U)
]

+4NcDStr
[m

2
(U +U †)

]

+WZ-term. (42)

in which the rotation back to Minkowski space was

taken. This is an effective action at low energy up

to the loop level of the quark fields. The matching

of the coefficients in (42) with the extended Skyrme

model (13) yields

ε2 =
Ncm

2

16π
2

[

m2

2
QM−BM

]

,

k2 = −Ncm
2

16π
2

[

m2

2
QM +BM

]

,

k3 = −Ncm
2

16π
2

BM. (43)

Since both QM and BM in (43) are positive, we find

k2
6 0, (44)

which remains valid even if setting k3 → 0 is taken,

as shown in (43): k2 ∼−QM.

The disagreement between (12) and (44) implies

either k2 in the extended Skyrme model (1) is negligi-

bly small and negative if we insist on the soliton pic-

ture for baryons, or the soliton picture for the baryons
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is beyond the approximation of QCD at the level of

the quark loop.

6 Summary and concluding remarks

We studied the role of the anti-commutator term

of the chiral current in a Skyrme-like model asso-

ciated with the Skyrmion stability and the nucleon

properties with the framework of the zero-mode quan-

tization. It is shown that the anti-commutator term

stablizes the Skyrmion soliton only when it couples in

terms of a negative coupling constant while a QCD

functional analysis, at the level of quark loop, sup-

ports a positive coupling constant. This means that

to have a stable soliton picture for baryons such a

coupling for the anti-commutator term has to be neg-

ligiblely small and negative, or that the soliton de-

scription of baryons is beyond the approximation of

QCD at the level of the quark loop. We note that this

does not mean that the soliton description of baryons

breaks down qualitatively, rather, that the Skyrmion

soliton picture effectively describes the baryons as a

rough approximation of the QCD.
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