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Abstract: The minimal dark matter model is given a supersymmetric extension. A super SU(2)L quintuplet

is introduced with its fermionic neutral component still being the dark matter, and the dark matter mass is

about 19.7 TeV. Mass splitting among the quintplet due to supersymmetry particles is found to be negligibly

small compared to the electroweak corrections. Other properties of this supersymmetry model are studied, it

has the solutions to the PAMELA and Fermi-LAT anomaly, and the predictions in higher energies need further

experimental data to verify them.
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1 Introduction

It is known from many astrophysical measure-

ments that the universe contains an enormous

amount of invisible, non-baryonic dark matter (DM)

which is not included in the Standard Model (SM).

Among various hypotheses for the nature of the DM,

that of weakly interacting massive particles (WIMPs)

is very attractive. Focussing on the DM problem, one

can explore a simple WIMP model, that is the mini-

mal dark matter model (MDM) [1, 2]: adding to the

SM a single matter X without introducing any addi-

tional discrete symmetry, and X is in a high dimen-

sional representation of the usual SM SU(2)L×U(1)Y
electroweak (EW) interactions. The stability of the

DM candidate is guaranteed by the SM gauge sym-

metry and by the renormalizability. The minimality

of the model lies in the fact that the new physics is

determined by only one parameter, namely the mass

M of the X multiplet. Therefore, the MDM is re-

markably predictive. There are some extensions to

the MDM [3].

In this work, we make SUSY extension to the

MDM. Note that in the so-called minimal SUSY ex-

tension of the SM (MSSM), the DM candidate, that

is the lightest SUSY particle, is there only after intro-

ducing an extra discrete symmetry by hand, which is

the R-parity. Instead, in our SUSY MDM (SMDM),

we still follow the logic of MDM; the existence of the

DM lies in the fact that the DM is in a high dimen-

sional representation of the SM gauge group without

using discrete symmetries.

In Section 2, the SMDM is constructed. In Sec-

tion 3, mass splitting of the X multiplet, the DM relic

density, direct and indirect detection signatures of the

SMDM are calculated. In Section 4, the conclusion

is made. In the Appendix, we give basic facts about

the representation of the SU(2) group.

2 SMDM

The SMDM is simply constructed by supersym-
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metric extension to the MDM. The particle content

is, in addition to that of the MSSM, the fermionic

SU(2)L 5-plet X of the MDM and its superpartner

which is a complex scalar 5-plet X̃. The charged com-

ponents XQ are slightly heavier than the neutral one

X0 due to quantum corrections [1, 2]; and the super-

partner X̃ because of its soft mass Msoft, is also heav-

ier than X. Both XQ and X̃ will decay into X0. The

relic particle in the SMDM is still X0 as in the MDM.

The new parameters are M and Msoft, the model is

still predictive. As for the Lagrangian, in addition to

that of the MSSM, we have

LSMDM =
i

2
(X†iσ̄µ ∂µXi +X̄

†iσ̄µ ∂µ X̄i)−
i

2
g2A

µ
a(X†iσ̄µ(T a)i

jXj −X̄†
iσ̄µ(T a)j

iX̄j)

−
√

2

2
g2(X̃

∗i(T a)i
jXjλ

a +λ†aX†i(T a)i
jX̃j − ˜̄X∗i(T a)j

iX̄jλ
a−λ†aX̄†i(T a)j

i ˜̄Xj)

+
1

2
(DµX̃∗DµX̃−M 2|X̃ |2)− 1

2
M(X̄iXi +X

†iX̄†i)+
1

2
g2DaX̃

i(T a)i
jX̃j −

1

2
M 2

soft|X̃|2. (1)

The component field notation has been used. In

Eq. (1), T a’s are generators of the SU(2)L in n repre-

sentation. Xi and X̄i consist of the left-hand pairs of

Xi, transforming in SU(2)L 5 representation with the

generator (T a)i
j and the complex conjugate repre-

sentation with the generator (T a)∗i
j = (T a)j

i, respec-

tively. They are not independent. Actually they are

dual to each other under the SU(2)L. We write the

Lagrangian in the form of Eq. (1) just for convenience.

Their superpartners compose a bosonic SU(2)L 5-

plets X̃i. Both Xi and X̃i have trivial SU(3)c×U(1)Y
quantum numbers (1,0).

In terms of 4-component notation, we can define

following spinors,

Ψ+2 ≡
(

X+2

(X̄+2)†

)

,Ψ−2 ≡
(

X−2

(X̄−2)†

)

= (Ψ+2)C, (2)

Ψ+1 ≡
(

X+1

(X̄+1)†

)

,Ψ−1 ≡
(

X−1

(X̄−1)†

)

= (Ψ+1)C, (3)

Ψ 0 ≡
(

X0

(X̄0)†

)

= (Ψ 0)C. (4)

The neutral component Ψ 0 is a Majorana field.

The superpotential takes the simple from:

W =WMSSM +
1

2
MX̃2, (5)

which gives X and X̃ the same unbroken supersymme-

try mass M . X̃ gets a soft mass after supersymmetry

breaking. The D-term contribution to the scalar po-

tential is:

VD =
1

2
g2
2

[

∑

φ∗taφ+
1

2
X̃∗T aX̃

]2

. (6)

where φ denotes the SU(2)L scalars in the MSSM.

Compared with the MSSM, the extra term is:

1

2
g2
2

[

∑

(φ∗taφ)(X̃∗T aX̃)+

(

1

2
X̃∗T aX̃

)2
]

. (7)

These couplings do not cause X̃ to decay but to anni-

hilate into MSSM SU(2)L scalars, which give an extra

negligible mass splitting between X̃i.

Considering non-renormalizable terms of the La-

grangian, there are dimension 5 operators X̃ ijkl

φiφjφkφl/Λ for the complex scalar 5-plet X̃, and

dimension 6 operators X ijklψiφjφkφl/Λ
2 for the

fermionic 5-plet X allowed by the SU(2)L × U(1)Y
gauge symmetry, where ψi is the left-hand

leptons or the higgsinos in the MSSM, e.g.

X̃HuHdHuH
∗
u/Λ, X̃HuHdHdH

∗
d/Λ, XH̃uHdHdH

∗
d/

Λ2, XLHuHdHu/Λ
2, etc.

We can generate these couplings by adding the

corresponding higher dimension superpotential, eg.

Wnon−ren =
X̃HuHdHuHd

Λ2
+
X̃L̃HuHdHu

Λ2
+ · · · , (8)

the equations of motion for the auxiliary fields are:

FHd
= −

(

∂W
∂Hd

)∗

= −
(

µHu +
X̃HuHuHd

Λ2
+
X̃L̃HuHu

Λ2
+ · · ·

)∗

,

FHu
= −

(

∂W
∂Hu

)∗

= −
(

µHd +
X̃HuHdHd

Λ2
+
X̃L̃HuHd

Λ2
+ · · ·

)∗

.

(9)

This generates dim6 couplings for the fermionic 5-

plet : XH̃uHdHdH
∗
d/Λ

2, XLHuHdHu/Λ
2 where Λ≈
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1015 GeV. These operators can induce 4-body de-

cays with a typical life-time τ ∼ Λ4 TeV−5 ∼ 1019 s

which is longer than the age of the universe (∼
1017 s). So these couplings have no influence on

the observed stability of the DM candidates. The

F-term also generates the scalar dim.5 operators

which are not suppressed by one power of Λ but

two powers: µX̃HuHdHdH
∗
d/Λ

2, µX̃L̃HdHdH
∗
d/Λ

2.

The typical life-time of these operators is: τ ∼
Λ3 TeV−3µ−1 ∼ 1020 s which is long enough. Of

course there are even higher dimension couplings of

the complex scalar X̃, eg. X̃X̃∗HuH
∗
uHdH

∗
dHdH

∗
d/Λ

4,

X̃X̃∗L̃HuHdH
∗
uH

∗
dH

∗
d/Λ

4, etc. These higher dimen-

sion operators can be neglected in considering the de-

cay.

Therefore the new introduced particles

(X̃±2,X̃±1,X̃0) only decay into (X±2,X±1,X0) via

gauge interactions. (X±2,X±1,X0) are quite stable.

We will further study the mass splitting among them

in the next section, and see that the DM candidate

is still X0.

3 Properties of the SMDM

The DM candidate in the SMDM model is still X0.

The mass splitting due to SUSY particles is small be-

cause of SUSY breaking.

3.1 Mass splitting

Mass splitting should be studied in detail, like

that in the MDM, because it can be calculated with

little uncertainty in this simple model. Because of

EW symmetry breaking, the gauge kinetic terms gives

the fermonic 5-plet X a mass splitting through loop

corrections [1, 2], ∆MQ
EW ≡MQ−M 0 ≈Q2×166 MeV,

where MQ and M 0 are the pole masses of XQ and X0,

respectively.

The scalar particles X̃’s also contribute to the

mass splitting of X. They are heavier than the

fermions X’s by a soft mass Msoft which is generally

expected to be about 100 GeV–1 TeV. This further

mass splitting is calculated by using the supersym-

metric kinetic term, the second line of Eq. (1), at the

loop level which involves X̃’s and the gauginos. By

using the two-component notation for fermions, the

one-loop pole mass is written as [4]

MQ
SUSY =M

(

1+
1

2
ΣQ

L +
1

2
ΣQ

R

)

(10)

where ΣQ
L , ΣQ

R are the 1PI self-energy functions as

shown in Fig. 1 in Q= 0,+1 cases.

Fig. 1. One-loop corrections to the 1PI self-energy functions to the Q= 0,+1 components of the SMDM.
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In the diagrams of Fig. 1, we denote the corre-

spondent superpartners:

φ+2 ≡ X̃+2, φ
′−2 ≡ ˜̄X+2, φ+1 ≡ X̃+1,

φ
′−1 ≡ ˜̄X+1, φ0 ≡ X̃+1.

(11)

w̃±, w̃3 are the superpartners of the SU(2)L gauge

bosons and w̃+ = V −1
11 C̃

+
1 +V −1

12 C̃
+
2 , w̃− = U−1

11 C̃
−
1 +

U−1
12 C̃

−
2 , w̃3 =N−1

2i Ñi, i=1–4. C̃±
1 , C̃±

2 and Ñi are the

charginos and neutralinos of the MSSM. U, V, N are

the unitary matrices diagonalizing the mass matrices

of charginos and neutralinos [5].

It is worth noting that the ΣQ
D term which is re-

lated to the B-term BijX̃iX̃j , may also appear in the

pole mass formula, and it does not cause divergences.

But in our calculation we do not consider it for sim-

plicity; it is enough for us to break the supersymmetry

only through the soft mass Msoft.

Using the superpartner notation mentioned in

Section 1 we get:

Σ+1
L =

g2
2

16π2

[

V ∗
11V11B1(C̃1,φ

+2)+V ∗
21V21B1(C̃2,φ

+2)+
3

2
(U∗

11U11B1(C̃1,φ
0)+U∗

21U21B1(C̃2,φ
0))

+
1

2
(N∗

12N12B1(Ñ1,φ
+1)+N∗

22N22B1(Ñ2,φ
+1)+N∗

32N32B1(Ñ3,φ
+1)+N∗

42N42B1(Ñ4,φ
+1)

]

,

Σ+1
R =

g2
2

16π2

[

U∗
11U11B1(C̃1,φ

′−2)+U∗
21U21B1(C̃2,φ

′−2)+
3

2
(V ∗

11V11B1(C̃1,φ
0)+V ∗

21V21B1(C̃2,φ
0))

+
1

2
(N∗

12N12B1(Ñ1,φ
′−1)+N∗

22N22B1(Ñ2,φ
′−1)+N∗

32N32B1(Ñ3,φ
′−1)+N∗

42N42B1(Ñ4,φ
′−1)

]

,

Σ0
L =

g2
2

16π2

[

3

2
(V ∗

11V11B1(C̃1,φ
+1)+V ∗

21V21B1(C̃2,φ
+1)+U∗

11U11B1(C̃1,φ
−1)+U∗

21U21B1(C̃2,φ
−1))

]

,

Σ0
R =

g2
2

16π2

[

3

2
(U∗

11U11B1(C̃1,φ
′−1)+U∗

21U21B1(C̃2,φ
′−1)+V ∗

11V11B1(C̃1,φ
′+1)+V ∗

21V21B1(C̃2,φ
′+1))

]

, (12)

where B1 is the one rank two point integral

B1(p
2,m1,m2) =− 1

2ε
+
A0(m1)−A0(m2)+(m2

2−m2
1−p2)B0(p

2,m1,m2)

2p2
, (13)

with A0 and B0 being the Passarino-Veltman func-

tions.

Because all the superpartners φi have the same

mass M+Msoft, we can simplify the above four equa-

tions to get the final result of the mass splitting due

to SUSY particles:

∆MQ
SUSY =

Q2

2
(ΣQ

L +ΣQ
R −Σ0

L−Σ0
R)

=
g2
2Q

2

16π2

[

−(V ∗
11V11 +U∗

11U11)B1(C̃1,φ)

−(V ∗
21V21 +U∗

21U21)B1(C̃2,φ)

+
1

2
N∗

i2Ni2B1(Ñi,φ)
]

. (14)

The poles in the B1 function are cancelled as ex-

pected using the unitarity of the U, V and N . The

mass splitting is a function of M1, M2, tanβ, µ, Msoft

and M . In the correct EW breaking parameter space,

our numerical result for the mass splitting due to

SUSY particles is that

∆MQ
SUSY ∼ 0.01Q2 MeV, (15)

which is negligibly small compared with the pure EW

corrections.

3.2 The thermal relic density

The thermal relic density fixes the WIMP mass.

In the MDM, the relic species are {X±2, X±1, X0}
and the coannihilation channels are:

XiXj →AA, f f̄ . (16)

where A and f denote an EW gauge boson and the

SM fermion, respectively. The mass splitting among

them are very small compared with their masses. In

the density calculation, such mass splitting are negli-

gible. The relic particle thermal average cross section
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is [1]:

〈σAv〉(XiXj →AA, f f̄ )≈ πα2
2

8M 2
×166. (17)

Matching to the relic abundance, the DM particle

mass is determined to be M = 4.4 TeV without con-

sidering Sommerfeld corrections.

Once SUSY is introduced, a whole bunch of su-

perpartners of those in MDM will present. SUSY

breaking gives soft masses to the scalars and gaug-

inos. Looking at X̃’s, they have a mass M +Msoft.

In general when Msoft 6 0.1M , e.g. Msoft 6 440 GeV

for M = 4.4 TeV, they have sizable effects on the

relic abundance and must be included in the the relic

species [6, 7]. So now the coannihilation relic species

are {(X̃±2,X̃±1, X̃0),(X±2,X±1,X0)} and the coanni-

hilation channels are:

X̃iX̃j →AA, f f̄ ,G̃G̃,

X̃iXj → f̃̄ f,G̃A,

XiXj →AA, f f̄ ,G̃G̃,

(18)

where G̃ denotes MSSM gauginos and f̃ the super-

partner of f.

Furthermore, because M is also much larger than

the electroweak scale, the physics of the above-

mentioned coannihilation is basically supersymmetric

and EW gauge symmetric, and we can make unbroken

EW symmetry and unbroken supersymmetry approx-

imation when calculating the thermal average cross

section. Nevertheless, it is still a hard work. In terms

of two-component fields, there are 24 gauge kinetic

vertices and another 24 vertices involving superpart-

ners. But actually we can have a useful and proper

estimate for the relations between cross sections for

the three kinds of processes in Eq. (21). It is found

that introducing SUSY has nearly 4 times influence

on the thermal average cross section. In Figs. 2–7 a

series of explicit examples by using two-component

spinor techniques [4] will be shown and the results

read:

vσ(X̄+2X+2 →W3W3) = 16× 8πα2

3M 2
, (19)

vσ(φ∗+2φ+2 →W3W3) = 32× 8πα2

3M 2
, (20)

vσ(X̄+2X+2 → ω̃3ω̃3)∼ 0, (21)

vσ(φ∗+2φ+2 → ω̃3ω̃3)∼ 0, (22)

vσ(φ+2φ
′−2 → ω̃3ω̃3)' 16× 3πα2

2M 2
, (23)

vσ(X̄+2φ+2 →W3ω̃3)' 16× 3πα2

8M 2
, (24)

vσ(X+2φ
′−2 →W3ω̃3)' 16× 3πα2

8M 2
, (25)

where v is the relative velocity in the lab frame,

Eqs. (24) and (25) are the results of the p-wave sup-

pression.

Fig. 2. The eight Feynman diagrams for X̄+2X+2 →W3W3.

Fig. 3. The three Feynman diagrams for φ∗+2φ+2 →W3W3.
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Fig. 4. The four Feynman diagrams for X̄+2X+2 → ω̃3ω̃3.

Fig. 5. The two Feynman diagrams for φ∗+2φ+2 → ω̃3ω̃3.

Fig. 6. The four Feynman diagrams for φ+2φ
′−2 → ω̃3ω̃3.

Fig. 7. The twelve Feynman diagrams for X̄+2φ+2 →W3ω̃3 and X+2φ
′−2 →W3ω̃3.
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We have already calculated a complete series of

thermal cross sections and we end up with:

vσeff =
∑

vσ≈ 4vσ(X̄+2X+2 →W3W3) (26)

considering the freedom for X+2, X̄+2 and φ+2, φ
′−2

are all g = 2. This is very different from the dra-

matic influence from the higher representation such

as SU(2)-5 in our problem. Despite this conclusion

which we have made from some specific examples, we

think it is a common result.

Once the DM particle is as heavy as a few TeV,

the Sommerfeld effect due to hundreds GeV particles

should be taken into consideration. In the MDM,

the Sommerfeld enhancement effect due to SM par-

ticles, especially due to W and Z bosons, has been

calculated and the factor is about 5 [8]. We expect

approximately the same result in our case. While our

case is N = 1 SUSY, all the SUSY particles should be

included in the ladder diagram calculation in deter-

mining the potential which tells us the enhancement

factor. However including the SUSY particles does

not essentially change the Sommerfeld effect. In the

extreme case of N = 4 SUSY, the extra symmetries

just keep the gauge coupling from running. The po-

tential itself has the same form as in the non-SUSY

Yang-Mills case. In our N = 1 SUSY case with soft

breaking, the logarithmic running of the gauge cou-

pling of the MDM is expected to be only mildly re-

duced, the Sommerfeld effect is then approximately

the same. So it is reasonable to say that the Som-

merfeld enhancement factor is about the same as that

calculated in the MDM, M '
√

5×2×4.4' 19.7 TeV.

3.3 Direct and indirect signatures

As for the direct DM detection rate, this SMDM

is of the same order as the MDM. The DM parti-

cle interacts with quarks via loops. Although more

heavy particles appear in the loops, the total cross

section has the same order, σSI ∝ 10−44 cm2, which

is within the sensitivity of the current experiments,

such as Super-CDMS and Xenon 1-ton [9, 10].

The DM annihilation in the galaxy may have ob-

servable signatures. The estimation of the cross sec-

tion is also like that in the MDM [11, 12], the re-

sult has no order change. Note that SUSY does not

change the Sommerfeld effect essentially, the predom-

inant annihilation channel is still into EW W bosons,

〈σv〉WW ∼ 10−23 cm3 ·s−1. Because the DM mass

M ' 19.7 TeV, we expect this model predicts: (1)

continuous rise e+/e+ + e− spectrum up to about

20 TeV; (2) flat e+ +e− spectrum up to M ; (3) p/p

flux has excess above the energy probed by PAMELA.

SMDM has the solutions to the PAMELA and Fermi-

LAT anomaly [13, 14], the predictions in higher en-

ergies need further experimental data to verify them.

4 Summary and discussion

We have made SUSY extension to the MDM

model by introducing a complex scalar quintuplet as

the superpartner of the fermion quintuplet. The neu-

tral component of the fermionic 5-plet is still the DM

particle as in the MDM model. Mass splittings among

the fermionic 5-plets due to SUSY have been calcu-

lated in detail and they are found to be small. By

considering new relic species and new coannihilation

channels in the MSSM final states, the DM mass is

estimated to be 19.7 TeV.

The direct and indirect signals are basically the

same as those in the MDM. Numerically the DM elas-

tic scattering cross section with a nucleus is about

10−44 cm3·s−1 and the cross section of the predom-

inant annihilation channel into W bosons is about

10−23 cm3·s−1. SMDM predicts e+, e+ + e−, p

spectrum in agreement with the previous PAMELA,

Fermi-LAT data, p flux has excess above the energy

probed by PAMELA which need further experimental

tests.

In the near future, suppose SUSY is discovered,

say at LHC, it will still be a question if MSSM itself

provides a DM particle, because R-parity as a dis-

crete symmetry is still an assumption which is not as

solid as gauge invariance and SUSY. It is plausible

that R-parity is violated. In that case, it is still sim-

ple and interesting to have the DM via introducing

SU(2)L high dimensional representations.

We would like to thank Yu-Qi Chen, Xiao-Jun Bi,

Jia-Shu Lu and Hua Shao for helpful discussions .
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Appendix A

The SU(2)-n representation

The SU(2)-n representation Uj (n=2j+1) is self-conjugate , when j is integer (n-odd), Uj is real , when j is

half-integer (n-even), Uj is self-conjugate also but not real:

XUjX−1 =Uj∗ ⇒











Uj =U j∗ j =0,1,2, · · · , X is symmetric

Uj is not real j =
1

2
,
3

2
, · · · , X is antisymmetric

, (A1)

it is important in proving some identities including the SU(2) generators.

The generators of the SU(2)-n representation is:

(T j
1 )νµ =

1

2
[δν(µ+1)Γ

j
ν +δν(µ−1)Γ

j
−ν ],

(T j
2 )νµ =−

i

2
[δν(µ+1)Γ

j
ν −δν(µ−1)Γ

j
−ν ],

(T j
3 )νµ =µδνµ,

(A2)

where

Γ
j
ν =Γ

j
−ν+1 =(j +ν)(j−ν +1)1/2

, (A3)

for example

T
1
3 =

√
2

2









0 1 0

1 0 1

0 1 0









, T
2
3 =

√
2

2









0 −i 0

i 0 −i
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and have

T̄ aT
2 =−T

2
T

a
. (A6)
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