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Temperature-dependent cross sections for πφ and

ρφ nonresonant reactions in hadronic matter *
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Abstract: With a potential of which the large-distance part reflects lattice gauge results and of which

the short-distance part is given by one gluon exchange plus perturbative one- and two-loop corrections, the

Schrödinger equation brings about temperature dependence of meson masses and mesonic quark-antiquark

relative-motion wave functions. The ground-state meson masses drop with increasing temperature. The tran-

sition amplitude calculated from the potential, the meson masses and the wave functions gives temperature-

dependent cross sections for the five nonresonant reactions πφ → KK̄∗ (or K∗K̄), πφ → K∗K̄∗, ρφ → KK̄,

ρφ→KK̄∗ (or K∗K̄) and ρφ→K∗K̄∗. The numerical temperature-dependent cross sections are parametrized.

The peak cross section of either πφ → KK̄∗ or πφ → K∗K̄∗ increases from T = 0 to T = 0.75Tc and decreases

with further increasing temperature. The cross section for ρφ→KK̄, ρφ→KK̄∗ or ρφ→K∗K̄∗ has a decreasing

trend while the temperature increases from 0.75Tc.
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1 Introduction

The φ meson is particular in relativistic heavy-

ion collisions due to its hidden strange constituent

quark and antiquark. The measurements on the ra-

tios φ/π and Ω/φ [1–3] can be used to explore de-

confinement by means of strangeness enhancement

[4, 5]. The felicitous use of similar masses of phi

and proton [6] gives a final identification on the scal-

ing behavior of the elliptic flow over the constituent-

quark number [7, 8]. The φ momentum spectra [3, 9–

11] are used to find the in-medium modification of

the hidden strangeness. Behind the observables is

phi-involved physics: φ yield from s and s̄ which

are produced in parton-parton scattering in initial

nucleus-nucleus collisions and deconfined matter; φ

yield from hadron-hadron reactions and hadron de-

cay in hadronic matter; φ absorption in hadronic

matter; elastic parton-s scattering and elastic hadron-

φ scattering that help establish thermalization of φ

mesons. The φ absorption depends on hadronic mat-

ter and the absorption cross section is expected to

depend on temperature. The φ absorption consists

of resonant reactions, quark-antiquark annihilation

processes where the gluon yielded in the annihilation

produces a quark-antiquark pair in the lowest order,

and reactions of which each is governed by a quark

interchange. Quark-interchange processes which oc-

cur among pions, rhos, kaons and vector kaons have

been shown to be important in the contribution of the

inelastic meson-meson scattering to the evolution of

mesonic matter [12]. We then expect that meson-phi

quark-interchange processes are important in the φ

absorption in mesonic matter and need to study the

processes.

Effective meson Lagrangians in Refs. [13–15] offer

small meson-phi cross sections, but the hidden local

symmetry Lagrangian provides large collision rates of

phis with rhos, kaons and vector kaons [16]. At the

quark level the quark-interchange-induced reactions

πφ→KK̄∗+K∗K̄+K∗K̄∗ and ρφ→KK̄+KK̄∗+K∗K̄+

K∗K̄∗ were studied [17] in the quark-interchange

mechanism [18]. In the above studies the meson-phi

reactions are placed in vacuum. Since the realistic

phi mesons are one species of hadronic matter, the

above work should be developed to study in-medium

Received 15 November 2011

* Supported by National Natural Science Foundation of China (11175111)

1)E-mail: xmxu@mail.shu.edu.cn
©2012 Chinese Physical Society and the Institute of High Energy Physics of the Chinese Academy of Sciences and the Institute

of Modern Physics of the Chinese Academy of Sciences and IOP Publishing Ltd



No. 9
LUO Zhi-Feng et al: Temperature-dependent cross

sections for πφ and ρφ nonresonant reactions in hadronic matter 837

modification of meson-phi reactions. Temperature

dependence of the meson-phi quark-interchange pro-

cesses is not known in experiments or theory. There-

fore, we study the temperature dependence of cross

sections for the processes in this work.

Since the two constituents of the π(ρ) meson and

those of the φ meson do not have the same flavor, the

quark-antiquark annihilation does not happen in the

πφ and ρφ reactions. The πφ and ρφ nonresonant

reactions are only governed by the quark interchange.

The quark-interchange mechanism is thus used in

this work to study the temperature dependence of

cross sections for the quark-interchange-induced re-

actions πφ→KK̄∗ (or K∗K̄), πφ→K∗K̄∗, ρφ→KK̄,

ρφ → KK̄∗ (or K∗K̄) and ρφ → K∗K̄∗. These reac-

tions are important in the φ absorption in hadronic

matter produced in Au-Au collisions at the Relativis-

tic Heavy Ion Collider since the dominant species of

hadronic matter are π and ρ. We establish the no-

tation K =

(

K+

K0

)

and K̄ =

(

K̄0

K−

)

for the pseu-

doscalar isospin doublets as well as K∗ =

(

K∗+

K∗0

)

and K̄∗ =

(

K̄∗0

K∗−

)

for the vector isospin doublets.

In the next section we introduce a method for ob-

taining cross sections for meson-meson nonresonant

reactions governed by the quark interchange. In Sec-

tion 3 numerical results of cross sections and discus-

sions are shown. Parametrizations of the numerical

cross sections are offered. A summary is in the last

section. Temperature-dependent masses of φ and η

mesons are presented in Appendix A and how to use

the cross sections obtained in the method is in Ap-

pendix B.

2 Method for obtaining cross sections

Each of the πφ and ρφ reactions is governed by

one quark interchange. The reactions which occur in

vacuum have been studied in the Born approxima-

tion in Ref. [17]. The reactions which occur at finite

temperatures, with which we are concerned in this

work, are still studied in the Born approximation.

In this approximation we arrive at temperature de-

pendence of the cross sections for the reactions while

this approximation needs temperature dependence of

a quark potential, mesonic quark-antiquark relative-

motion wave functions and meson masses. The po-

tential, wave functions and masses are first described

in this section. Based on them, we show transition

amplitudes and the cross sections.

We obtained the following central spin-

independent potential of constituents a and b in

Ref. [19],

Vsi(~r) = −
~λa

2
·
~λb

2

3

4
D

[

1.3−
(

T

Tc

)4
]

tanh(Ar)

+
~λa

2
·
~λb

2

6π

25

v(λr)

r
exp(−Er), (1)

where the critical temperature Tc = 0.175 GeV, λ =
√

3b0/16π2α′ with b0 = 25/3 and α′ = 1.04 GeV−2, ~λa

are the Gell-Mann matrices for the color generators

and the dimensionless function v is given by

v(x) =
4b0
π

∫
∞

0

dQ

Q

(

ρ( ~Q2)− K

~Q2

)

sin

(

Q

λ
x

)

, (2)

where K= 3/16π2α′ only in this integrand, the quan-

tity ρ− K

~Q2
arises from one-gluon exchange and per-

turbative one- and two-loop corrections, Q is the ab-

solute value of gluon momentum ~Q and ρ( ~Q2) is given

by Buchmüller and Tye [20]. Only in this potential

A= 1.5

[

0.75+0.25

(

T

Tc

)10
]6

GeV,

D = 0.7 GeV and E = 0.6 GeV. The potential is

valid for a temperature T smaller than Tc. When the

constituent-constituent distance r approaches zero,

the potential comes from one-gluon exchange plus

perturbative one- and two-loop corrections. At large

distances the potential becomes a constant that relies

on temperature and was given by the lattice calcula-

tions in Ref. [21]. The lattice calculations offered

the numerical quark potential at intermediate and

large distances, which was individually parametrized

by Wong [22] and Digal et al. [23] with different func-

tions of r and T .

We obtain meson masses by first using the central

spin-independent potential in the Schrödinger equa-

tion and then using the spin-spin interaction that

arises from one-gluon exchange and perturbative one-

and two-loop corrections [24]

Vss(~r) = −
~λa

2
·
~λb

2

16π2

25
δ3(~r)

~sa ·~sb
mamb

+
~λa

2
·
~λb

2

4π

25

1

r

d2v(λr)

dr2
~sa ·~sb
mamb

, (3)

where ~sa (ma) is the spin (mass) of the constituent

quark or antiquark labeled as a. Vacuum masses of

pion, rho, kaon and vector kaon and temperature-

dependent masses of the four mesons have already
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been obtained in Ref. [19] with an up or down quark

mass of 0.32 GeV and a strange quark mass of

0.5 GeV. In Appendix A we show how to obtain

the vacuum masses of φ and η and temperature-

dependent masses of the two mesons.

The Schrödinger equation with the central spin-

independent potential is solved to obtain the wave

functions of quark-antiquark relative motion in

mesons. With the wave functions, the potential and

the meson masses, we calculate the transition ampli-

tude Mfi for a reaction governed by one quark in-

terchange in the Born approximation. The reaction

A(q1q1)+B(q2q2) → C(q1q2)+D(q2q1) of mesons A

and B has two forms, the prior form and the post form

[25–27]. Gluon propagation between two constituents

takes place before the quark interchange in the prior

form or after the quark interchange in the post form.

The transition amplitude in the prior form is [17]

Mprior
fi =

√

2Eq1q̄1
2Eq2q̄2

2Eq1 q̄2
2Eq2q̄1

∫
d3pq1q̄2

(2π)3
d3pq2q̄1

(2π)3
×ψ+

q1q̄2
(~pq1q̄2

)ψ+
q2 q̄1

(~pq2 q̄1
)(Vq1 q̄2

+Vq̄1q2

+Vq1q2
+Vq̄1 q̄2

)ψq1q̄1
(~pq1 q̄1

)ψq2 q̄2
(~pq2q̄2

), (4)

and the transition amplitude in the post form is

Mpost
fi =

√

2Eq1q̄1
2Eq2q̄2

2Eq1q̄2
2Eq2q̄1

(∫
d3pq1q̄1

(2π)3
d3pq1q̄2

(2π)3
ψ+

q1 q̄2
(~pq1 q̄2

)ψ+
q2 q̄1

(~pq2q̄1
)Vq1 q̄1

ψq1q̄1
(~pq1q̄1

)ψq2 q̄2
(~pq2 q̄2

)

+

∫
d3pq2q̄2

(2π)3
d3pq2q̄1

(2π)3
ψ+

q1 q̄2
(~pq1 q̄2

)ψ+
q2 q̄1

(~pq2q̄1
)Vq̄2q2

ψq1q̄1
(~pq1q̄1

)ψq2 q̄2
(~pq2 q̄2

)

+

∫
d3pq1q̄2

(2π)3
d3pq2q̄1

(2π)3
ψ+

q1 q̄2
(~pq1 q̄2

)ψ+
q2 q̄1

(~pq2q̄1
)Vq1q2ψq1 q̄1

(~pq1 q̄1
)ψq2q̄2

(~pq2 q̄2
)

+

∫
d3pq1q̄2

(2π)3
d3pq2q̄1

(2π)3
ψ+

q1q̄2
(~pq1 q̄2

)ψ+
q2 q̄1

(~pq2q̄1
)Vq̄1 q̄2ψq1 q̄1

(~pq1 q̄1
)ψq2q̄2

(~pq2 q̄2
)

)

. (5)

The transition amplitude in the prior or post form depends on the energies, Eq1q1
, Eq2q2

, Eq1q2
and Eq2q1

, of

the four mesons, the quark-antiquark relative-motion wave functions ψab versus the relative momenta ~pab and

the potential Vab of constituents a and b. It is not obvious that Mprior
fi =Mpost

fi can be derived from Eqs. (4)

and (5) but indeed Mprior
fi =Mpost

fi if the wave functions ψab of mesons are solutions of the Schrödinger equation

with Vab [25–27]. The so-called post-prior discrepancy Mprior
fi 6=Mpost

fi occurs while the wave functions do not

satisfy the Schrödinger equation with Vab. Eqs. (4) and (5) display the transition amplitudes in momentum

space. This needs the quark potential as a function of the gluon momentum, which is the Fourier transform of

Vsi(~r)+Vss(~r),

Vab

(

~Q
)

= −
~λa

2
·
~λb

2

3

4
D

[

1.3−
(

T

Tc

)4
]

[

(2π)3δ3( ~Q)− 8π

Q

∫
∞

0

dr
r sin(Qr)

exp(2Ar)+1

]

+
~λa

2
·
~λb

2
64πE

∫
∞

0

dq
ρ(q2)− K

q2

(E2 +Q2 +q2)2−4Q2q2
−
~λa

2
·
~λb

2

16π2

25

~sa ·~sb
mamb

+
~λa

2
·
~λb

2

16π2λ

25Q

∫
∞

0

dx
d2v (x)

dx2
sin

(

Q

λ
x

)

~sa ·~sb
mamb

. (6)

Now the potential Vab contains both the central spin-

independent potential and the spin-spin interaction.

Hence, the wave functions ψab which are the Fourier

transform of the relative-motion wave functions de-

termined by the central spin-independent potential

Vsi are not solutions of the Schrödinger equation with

Vab, and the post-prior discrepancy takes place in our

calculations. Related to the scattering in the prior

form and in the post form, we get two cross sections

[17]

σprior =
1

32πs

|~P ′(
√
s)|

|~P (
√
s)|

∫π

0

dθ|Mprior
fi (s,t)|2 sinθ, (7)

and

σpost =
1

32πs

|~P ′(
√
s)|

|~P (
√
s)|

∫π

0

dθ|Mpost
fi (s,t)|2 sinθ, (8)
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which lead to the polarized cross section

σ=
σprior +σpost

2
. (9)

In Eqs. (7) and (8) the Mandelstam variables are

s= (Eq1q̄1
+Eq2 q̄2

)2−(~Pq1 q̄1
+ ~Pq2 q̄2

)2 and t= (Eq1q̄1
−

Eq1 q̄2
)2−(~Pq1q̄1

−~Pq1 q̄2
)2 where the mesons A, B, C and

D have the momenta ~Pq1 q̄1
, ~Pq2q̄2

, ~Pq1 q̄2
and ~Pq2 q̄1

, re-

spectively. In the center-of-mass frame the mesons A,

B, C and D have the momenta ~P , −~P , ~P ′ and −~P ′,

respectively. θ is the angle between ~P and ~P ′.

The unpolarized cross section for A(q1q1) +

B(q2q2)→C(q1q2)+D(q2q1) is

σunpol(
√
s,T )

=
1

(2SA +1)(2SB +1)

∑

S

(2S+1)σ(S,mS,
√
s),

(10)

where SA, SB and S are the spin of A, the spin of

B and the total spin of the two mesons, respectively.

The unpolarized cross section does not depend on the

magnetic projection quantum number mS of S.

3 Numerical results and discussions

A quark-interchange-induced reaction may be an

endothermic reaction which has the general features:

(1) the threshold energy equals the sum of the masses

of the two final mesons; (2) the cross section is zero at

the threshold energy or at
√
s→∞; (3) the cross sec-

tion has a maximum, i.e. a peak cross section. While

temperature changes, the threshold energy and the

peak cross section change. When the distance r be-

tween the quark and the antiquark in a meson is large

enough, the central spin-independent potential at a

given temperature exhibits a constant value and be-

comes a plateau. The value decreases with increasing

temperature and this means confinement gets weaker.

Solutions of the Schrödinger equation with the poten-

tial show that the meson’s root-mean-square radius

increases and any bound state becomes looser and

looser. Cross sections increase with increasing radii

of initial mesons but decrease with weakening final

bound states. When temperature increases, the two

factors generate rising or falling peak cross sections.

Indeed, this anticipation is confirmed by the temper-

ature dependence of the unpolarized cross sections for

the two nonresonant reactions, πφ → KK̄∗ in Fig. 1

and πφ → K∗K̄∗ in Fig. 2. Each curve in the two

figures exhibits one or two peaks. In the following we

refer the peak to that high peak if two peaks appear.

While temperature goes up from zero, the peak cross

section increases. At T → Tc the peak cross section

decreases. The maximum of the peak cross section

is located at T/Tc = 0.75 and has the value 2.72 mb

for πφ → KK̄∗ or 0.84 mb for πφ → K∗K̄∗. Given a

temperature, the peak cross section for πφ→KK̄∗ is

larger than that for πφ→K∗K̄∗.

Fig. 1. πφ → KK̄∗ cross sections at various

temperatures.

Fig. 2. πφ → K∗K̄∗ cross sections at various

temperatures.

The numerical cross sections for the πφ reactions

are parametrized as

σunpol(
√
s,T ) = a1

(√
s−√

s0

b1

)c1

×exp

[

c1

(

1−
√
s−√

s0
b1

)]

+a2

(√
s−√

s0
b2

)c2

×exp

[

c2

(

1−
√
s−√

s0

b2

)]

. (11)
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Table 1. Values of parameters in the parametrization given in Eq. (11) for the reaction πφ → KK̄∗. a1 and

a2 are in units of mb; b1, b2, d0 and
√

sz are in units of GeV; c1 and c2 are dimensionless.

T/Tc a1 b1 c1 a2 b2 c2 d0
√

sz

0 0.01 0.01 0.2 0.63 0.16 1.55 0.16 2.597

0.65 0.21 0.09 0.01 1.59 0.01 0.8 0.02 1.885

0.75 0.6 0.001 0.02 2.15 0.01 1.62 0.01 1.652

0.85 0.67 0.001 0.03 1.76 0.01 3.14 0.01 1.339

0.9 0.6 0.003 0.11 0.85 0.01 2.48 0.01 1.175

0.95 0.22 0.001 0.02 0.52 0.01 0.83 0.01 1.109

Table 2. The same as Table 1 except for πφ→K∗K̄∗.

T/Tc a1 b1 c1 a2 b2 c2 d0
√

sz

0 0.01 0.001 0.93 0.39 0.21 1.46 0.25 2.926

0.65 0.02 0.001 0.01 0.77 0.13 1.74 0.12 2.095

0.75 0.02 0.002 0.01 0.79 0.1 1.22 0.09 1.853

0.85 0.05 0.015 0.01 0.43 0.06 0.81 0.07 1.593

0.9 0.47 0.004 0.6 0.22 0.05 0.43 0.01 1.44

0.95 0.1 0.02 0.06 0.29 0.01 0.96 0.01 1.296

Values of the parameters, a1, b1, c1, a2, b2 and c2, are

listed in Table 1 for πφ → KK̄∗ and in Table 2 for

πφ→K∗K̄∗. The cross section for πφ→K∗K̄ equals

the one for πφ→KK̄∗.

We denote by
√
sp the square root of the Mandel-

stam variable corresponding to the peak cross section.

In the two tables we show the difference of
√
sp with

respect to the threshold energy
√
s0, d0 =

√
sp−

√
s0.

d0 indicates sensitivity of a reaction to the energy

variation with respect to the threshold energy. The

smaller the d0, the more sensitive a reaction. Since

the masses of kaon and vector kaon decrease with

increasing temperature [19], the threshold energy de-

creases as shown in Figs. 1 and 2. Not only
√
s0

decreases, but also
√
sp decreases. However, d0 first

decreases with increasing temperature and then ar-

rives at 0.01 independent of temperature. In Tables 1

and 2 we list
√
sz that is the square root of the Man-

delstam variable at which the cross section is 1/100

of the peak cross section. The open interval (
√
s0,√

sz) indicates the energy region where a reaction ef-

fectively takes place.

Due to the mass difference of π and ρ, the πφ

reactions are endothermic and the ρφ reactions are

exothermic. We plot unpolarized cross sections for

the three nonresonant reactions ρφ→KK̄, ρφ→KK̄∗

and ρφ → K∗K̄∗ in Figs. 3–5, respectively. The

numerical cross sections for the ρφ reactions are

parametrized as

σunpol(
√
s,T ) =

~P ′2

~P 2

{

a1

(√
s−√

s0

b1

)c1

×exp

[

c1

(

1−
√
s−√

s0

b1

)]

+a2

(√
s−√

s0
b2

)c2

×exp

[

c2

(

1−
√
s−√

s0
b2

)]}

, (12)

where

~P 2 =
1

4s

{

[

s−
(

m2
q1q̄1

+m2
q2q̄2

)]2−4m2
q1q̄1

m2
q2q̄2

}

,

(13)

~P ′2 =
1

4s

{

[

s−
(

m2
q1q̄2

+m2
q2q̄1

)]2−4m2
q1q̄2

m2
q2q̄1

}

,

(14)

in which mq1 q̄1
, mq2q̄2

, mq1 q̄2
and mq2q̄1

are the

masses of mesons A(q1q̄1), B(q2q̄2), C(q1q̄2) and

D(q2q̄1), respectively. Values of the parameters, a1,

b1, c1, a2, b2 and c2, are listed in Tables 3–5 for

ρφ → KK̄, ρφ → KK̄∗ and ρφ → K∗K̄∗, respectively.

The cross section for ρφ → K∗K̄ equals the one for

ρφ → KK̄∗. For the quantity enclosed by the braces

we list d0 and
√
sz in Tables 3–5.

√
s0 is the sum

of the masses of ρ and φ mesons. d0 decreases with
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Table 3. Values of parameters in the parametrization given in Eq. (12) for the reaction ρφ→KK̄. a1 and a2

are in units of mb; b1, b2, d0 and
√

sz are in units of GeV; c1 and c2 are dimensionless.

T/Tc a1 b1 c1 a2 b2 c2 d0
√

sz

0 0.01 0.14 0.66 0.02 0.19 2.14 0.2 2.648

0.65 0.008 0.008 0.53 0.05 0.15 1.93 0.15 2.103

0.75 0.015 0.004 0.61 0.07 0.12 1.7 0.1 1.854

0.85 0.025 0.004 0.43 0.057 0.084 2.61 0.08 1.597

0.9 0.023 0.086 1.1 0.07 0.005 0.5 0.005 1.433

0.95 0.05 0.006 0.54 0.01 0.06 0.32 0.005 1.305

Table 4. The same as Table 3 except for ρφ→KK̄∗.

T/Tc a1 b1 c1 a2 b2 c2 d0
√

sz

0 0.003 0.001 0.01 0.14 0.17 1.04 0.2 2.837

0.65 0.038 0.007 0.51 0.29 0.12 1.59 0.1 2.074

0.75 0.011 0.82 0.3 0.23 0.09 2.99 0.08 1.839

0.85 0.04 0.0034 0.5 0.14 0.08 1.59 0.07 1.592

0.9 0.038 0.005 1.65 0.07 0.02 0.13 0.005 1.46

0.95 0.04 0.006 0.84 0.03 0.03 0.19 0.005 1.336

Table 5. The same as Table 3 except for ρφ→K∗K̄∗.

T/Tc a1 b1 c1 a2 b2 c2 d0
√

sz

0 0.04 0.003 0.5 1.06 0.18 1.3 0.15 2.859

0.65 4 0.005 0.44 1.5 0.11 1.95 0.005 1.99

0.75 4.16 0.004 0.36 1.21 0.09 4.01 0.005 1.751

0.85 0.74 0.002 0.23 0.47 0.01 0.05 0.001 1.532

0.9 0.39 0.001 0.19 0.44 0.01 0.31 0.001 1.413

0.95 0.21 0.002 0.29 0.14 0.02 0.26 0.001 1.334

increasing temperature and approaches 0.005 for

ρφ → KK̄ and ρφ → KK̄∗ or 0.001 for ρφ → K∗K̄∗.

Hence, at a higher temperature the reactions are gen-

erally more sensitive to the energy variation with re-

spect to the threshold energy.

Fig. 3. ρφ→KK̄ cross sections at various tem-

peratures.

Fig. 4. ρφ → KK̄∗ cross sections at various

temperatures.

In the exothermic reactions ρ and φ have mo-

menta ~P = 0 and the final mesons have ~P ′ 6= 0

in the center-of-mass frame at the threshold ener-

gies. For a reaction at a given temperature a very

small increase of
√
s from the threshold energy

√
s0
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Fig. 5. ρφ → K∗K̄∗ cross sections at various

temperatures.

causes a very rapid decrease in ~P ′2/~P 2. Since d0 for

ρφ → KK̄ at T/Tc =0, 0.65, 0.75, 0.85 (ρφ → KK̄∗

at T/Tc =0, 0.65, 0.75, 0.85; ρφ→K∗K̄∗ at T/Tc =0,

0.65, 0.75) are much larger than d0 at T/Tc =0.9, 0.95

(at T/Tc =0.9, 0.95; at T/Tc =0.85, 0.9, 0.95), we say

that the quantity enclosed by the braces in Eq. (12)

for the former increases slowly from the threshold en-

ergy and the quantity for the latter increases rapidly.

If the quantity increases slowly and is overcome in

part by the decrease of ~P ′2/~P 2, one peak cross sec-

tion appears like the curve at T/Tc = 0.65, 0.75 or

0.85 excluding ρφ→K∗K̄∗. If the quantity increases

rapidly to a small value and is completely overcome

by the decrease of ~P ′2/~P 2, no peak cross section ap-

pears like the curve at T/Tc = 0.9, 0.95 or 0.85 only for

ρφ → K∗K̄∗. The experimental mass of vector kaon

is 1.8 times the one of kaon. ~P ′2/~P 2 for ρφ → KK̄,

ρφ → KK̄∗ and ρφ → K∗K̄∗ are in decreasing order.

The decrease of ~P ′2/~P 2 for ρφ → KK̄ or ρφ → KK̄∗

can overcome the increase of the quantity but the one

for ρφ→K∗K̄∗ can not. Hence, no peak cross section

appears like the curve at T/Tc = 0 for ρφ → KK̄ or

ρφ→KK̄∗, or a wide peak appears like the curve at

T/Tc = 0 for ρφ→K∗K̄∗. At T = 0.65Tc or T = 0.75Tc

the peak cross sections for ρφ→KK̄, ρφ→KK̄∗ and

ρφ → K∗K̄∗ are in increasing order. However, we

cannot conclude that at any temperature the cross

sections for ρφ→KK̄, ρφ→KK̄∗ and ρφ→K∗K̄∗ at

any
√
s must take the order.

4 Summary

In the Born approximation we have obtained

temperature-dependent cross sections for the five

nonresonant reactions, πφ → KK̄∗ (or K∗K̄), πφ →
K∗K̄∗, ρφ → KK̄, ρφ → KK̄∗ (or K∗K̄) and ρφ →
K∗K̄∗, which are governed by the quark interchange.

The numerical cross sections are parametrized and a

procedure on how to use the cross sections is given for

future applications. The peak cross sections for the

endothermic πφ reactions rise or fall with increasing

temperature. In addition to the features of exother-

mic reactions at the threshold energies, the ρφ reac-

tions at some temperatures have peak cross sections.

At a higher temperature the πφ and ρφ reactions

are in general more sensitive to the energy variation

with respect to the threshold energies. The above

in-medium modification to the in-vacuum φ absorp-

tion is considerable. This is fundamentally related

to the temperature dependence of the quark poten-

tial, the quark-antiquark wave functions and the me-

son masses that drop with increasing temperature in

consequence of QCD.

Appendix A

The spin-averaged mass of a spin-0 meson and a

spin-1 meson with the same isospin is one-fourth of

the spin-0 meson mass plus three-fourths of the spin-

1 meson mass. The spin-averaged mass is obtained by

solving the Schrödinger equation with the central spin-

independent potential or by summing the quark mass,

the antiquark mass and the nonrelativistic-Hamiltonian

expectation value of the quark-antiquark relative-motion

wave function. The mass splitting of a spin-0 meson and

a spin-1 meson with the same isospin is given by the ex-

pectation value of the spin-spin interaction. After the

spin-averaged mass and the mass splitting are obtained,

we find meson masses of which the mass of the spin-0 me-

son is the spin-averaged mass minus three-fourths of the

mass splitting and the mass of the spin-1 meson is the

spin-averaged mass plus one-fourth of the mass splitting.

The vacuum masses of pion, rho, kaon and vector kaon are

listed in Table 1 of Ref. [19] and the temperature depen-

dence of meson masses in the region 0.6 6 T/Tc 6 0.99 is

shown in Fig. 2 of Ref. [19]. In this temperature region the

four meson masses decrease with increasing temperature

and the π and ρ masses approach zero at T → Tc. This

tendency is consistent with the dropping mass scenarios

in Refs. [28, 29]. Parametrizations of the temperature-
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dependent masses in units of GeV are

mπ = 0.41

[

1−

(

T

1.05Tc

)11.88
]3.81

, (A1)

mρ = 0.73

[

1−

(

T

0.992Tc

)3.67
]0.989

, (A2)

mK = 0.634

[

1−

(

T

1.105Tc

)8.646
]2.591

, (A3)

mK∗ = 0.84

[

1−

(

T

1.05Tc

)4.16
]

, (A4)

mπ and mK∗ are also given by Eqs. (A6) and (A9) in

Ref. [19]. mρ and mK displayed here fit the temperature

dependence of the ρ and K masses better than Eqs. (A7)

and (A8) in Ref. [19].

It is assumed in Ref. [19] that the spatial wave func-

tions of quark-antiquark relative motion of all the mesons

in the ground-state pseudoscalar octet and the ground-

state vector nonet are identical while the spatial wave

functions of π and ρ are a solution of the Schrödinger

equation with the central spin-independent potential. Let

m̄0φ denote the spin-averaged mass of the φ meson and

the ss̄ state with spin 0. m̄0φ equals the nonrelativistic-

Hamiltonian expectation value of the φ wave function plus

two times the strange quark mass. Let ∆m0φ denote the

mass splitting of the φ meson and the ss̄ state with spin

0. ∆m0φ equals the Vss expectation value of the φ wave

function. We calculate the φ mass according to

mφ = m̄0φ +
1

4
∆m0φ. (A5)

Let m̄0ω be the spin-averaged mass of the ω meson

and the
1
√

2
(uū+dd̄) state with spin 0. m̄0ω equals the

nonrelativistic-Hamiltonian expectation value of the ω

wave function plus two times the up quark mass. The

masses of the
1
√

6
(uū+dd̄−2ss̄) states with spins 0 and 1

are mη and
1

3
mω +

2

3
mφ, respectively. The spin-spin in-

teraction thus yields the mass splitting of the two states,

∆mηωφ = 1
3
mω + 2

3
mφ−mη. From the flavor wave func-

tions of η, ω and φ, we have the spin-averaged mass of

the two states

1

4
mη +

3

4

(

1

3
mω +

2

3
mφ

)

=
1

3
m̄0ω +

2

3
m̄0φ. (A6)

We finally arrive at the η mass

mη =
1

3
m̄0ω +

2

3
m̄0φ−

3

4
∆mηωφ. (A7)

We obtain the vacuum masses of φ and η to be

1.0179 GeV and 0.6032 GeV, respectively, compared with

the experimental data 1.0195 GeV and 0.5479 GeV. The

central spin-independent potential in Eq. (1) has the be-

havior of tanh(Ar) at large distances and cannot mimic

the linear confinement. In vacuum the φ mass is about

two times the η mass and the phi is thus not sensitive to

the potential behavior at large distances while the eta is

a little sensitive to the behavior. Therefore, the φ mass

is well reproduced while the η mass is approximately re-

produced.

We solve the Schrödinger equation with the potential

in Eq. (1) to obtain the temperature-dependent quark-

antiquark relative-motion wave functions and the masses

of φ and η are calculated according to Eqs. (A5) and (A7)

in the region 0.6 6 T/Tc 6 0.99 that covers the tempera-

ture of hadronic matter. The temperature dependence of

φ and η masses is shown by the solid and dashed curves

in Fig. 6, respectively. Because on the right-hand side of

Eq. (1) the first term related to the large-distance be-

havior of the potential gives a smaller contribution at a

higher temperature, the φ and η masses decrease with

increasing temperature. The masses in units of GeV are

parametrized as

mφ = 0.964

[

1−

(

T

1.13Tc

)5.14
]1.39

, (A8)

mη = 0.691

[

1−

(

T

1.21Tc

)9.067
]6.029

. (A9)

Fig. 6. Meson masses as functions of T/Tc.
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Appendix B

The curves shown in Figs. 1–5 correspond to the zero

temperature and the five nonzero temperatures T1 =

0.65Tc, T2 = 0.75Tc, T3 = 0.85Tc, T4 = 0.9Tc and T5 =

0.95Tc. In this appendix we present a procedure on how to

obtain unpolarized cross sections for 0.65Tc 6 T 6 0.99Tc

from the curves.

First, we state the procedure for the endothermic πφ

reactions. For Ti 6 T 6 Ti+1(i=1, 2, 3 or 4) d0 and
√

sz

are

d0 =
d0i+1−d0i

Ti+1−Ti

(T −Ti)+d0i, (B1)

√
sz =

√
szi+1−

√
szi

Ti+1−Ti

(T −Ti)+
√

szi, (B2)

where d0i is d0 at Ti and
√

szi is
√

sz at Ti. d0i and
√

szi

can be found in Tables 1–2.
√

s0 is the sum of masses

of final mesons and parametrizations of the masses have

been given by Eqs. (A3) and (A4). The square root of

the Mandelstam variable corresponding to the peak cross

section is
√

sp =
√

s0 +d0. We define a ratio

ζ =



















√
s−

√
sp

√
s0−

√
sp

if
√

s0 6
√

s6
√

sp

√
s−

√
sp

√
sz−

√
sp

if
√

sp <
√

s 6
√

sz.

(B3)

The ratio ζ is on the closed interval [0, 1]. The unpo-

larized cross section for 0.65Tc 6 T 6 0.95Tc is estimated

by

σunpol(
√

s,T )=











σi+1−σi

Ti+1−Ti

(T −Ti)+σi if
√

s0 6
√

s 6
√

sz

0 if
√

s>
√

sz,

(B4)

where

σunpol
i =

{

σunpol(
√

spi +ζ(
√

s0i−
√

spi),Ti) if
√

s0 6
√

s 6
√

sp

σunpol(
√

spi +ζ(
√

szi−
√

spi),Ti) if
√

sp <
√

s6
√

sz

, (B5)

with
√

spi being
√

sp at Ti and
√

s0i being
√

s0 at Ti.

σunpol at Ti are the cross sections shown in Figs. 1–2 and

are given by Eq. (11) together with the parameters listed

in Tables 1–2. For 0.95Tc < T 6 0.99Tc Eqs. (B1)–(B5)

still apply to obtaining unpolarized cross sections so long

as Ti = T4 and Ti+1 = T5 are set.

Eqs. (B1)–(B3) are suited to endothermic reactions

of which each has the zero cross section at the threshold

energy and at the infinite center-of-mass energy and has

one maximum cross section in its
√

s dependence. For

exothermic reactions cross sections are infinite at thresh-

old energies. But the quantity enclosed by the braces in

Eq. (12) has the general
√

s dependence of endothermic

reactions. Hence, Eqs. (B1)–(B3) apply to the quantity

enclosed by the braces.
√

s0 equals the sum of the ρ mass

given by Eq. (A2) and the φ mass given by Eq. (A8).

Eq. (B4) now gives the unpolarized cross sections for

exothermic reactions while σunpol
i are the cross sections

shown in Figs. 3–5 and are given by Eq. (12) together with

the parameters listed in Tables 3–5. Since the infinity of

the cross sections at the threshold energies is intractable,

do not let
√

s equal
√

s0 while fortran code is made.

The above procedure is available for both endother-

mic and exothermic reactions. It is necessary to apply the

procedure to the nonresonant reactions, ππ→ ρρ for I =2,

KK→K∗K∗ for I = 1, KK∗ →K∗K∗ for I =1, πK→ρK∗

for I =3/2, πK∗ →ρK∗ for I =3/2, ρK→ ρK∗ for I = 3/2

and πK∗ → ρK for I = 3/2, for which cross sections at

the five nonzero temperatures are given and parametrized

in Ref. [19]. Then we list d0 and
√

sz in Tables 6–8 for

the seven endothermic reactions. The threshold energy

equals the sum of the masses of the two final mesons.

d0 decreases with increasing temperature but becomes a

constant or goes up at T →Tc. For readers who are inter-

ested in studying in-medium modification by comparing

the evolution of mesonic matter at finite temperatures and

at the zero temperature, we list a1, b1, c1, a2, b2 and c2

in Table 9 for the seven reactions at T = 0. We finally

note that we have a1 = 0.16 mb, b1 =0.01 GeV, c1 =0.56,

a2 = 0.08 mb, b2 = 0.07 GeV and c2 = 0.24 as renewed

parameters of the numerical ρK→ ρK∗ cross sections for

I =3/2 at T/Tc =0.95.

Table 6. Values of d0 and
√

sz.

I =2 ππ→ ρρ I = 1 KK→K∗K∗ I =1 KK∗ →K∗K∗

T/Tc
d0

√
sz d0

√
sz d0

√
sz

0 0.2 2.679 0.2251 3.214 0.2251 3.181

0.65 0.1251 1.769 0.1126 2.345 0.1001 2.289

0.75 0.1126 1.416 0.1001 2.114 0.0751 2.086

0.85 0.1126 1.129 0.0686 1.917 0.0626 1.905

0.9 0.0126 0.97 0.0051 1.779 0.0061 1.808

0.95 0.0186 0.889 0.0061 1.663 0.0061 1.705
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Table 7. Values of d0 and
√

sz.

I = 3/2 πK→ ρK∗ I = 3/2 πK∗ → ρK∗

T/Tc
d0

√
sz d0

√
sz

0 0.2501 3.011 0.2501 2.958

0.65 0.1626 2.166 0.1251 2.109

0.75 0.1251 1.914 0.0936 1.885

0.85 0.0876 1.699 0.0876 1.69

0.9 0.0061 1.548 0.0061 1.58

0.95 0.0126 1.475 0.0126 1.52

Table 8. Values of d0 and
√

sz.

I = 3/2 ρK→ ρK∗ I = 3/2 πK∗ → ρK
T/Tc

d0
√

sz d0
√

sz

0 0.2251 2.876 0.2001 2.552

0.65 0.1126 2.052 0.0251 1.823

0.75 0.0876 1.847 0.0251 1.601

0.85 0.0751 1.678 0.0061 1.273

0.9 0.0061 1.572 0.0061 1.419

0.95 0.0148 1.519 0.0061 1.466

Table 9. Values of parameters at T = 0.

reaction a1/mb b1/GeV c1 a2/mb b2/GeV c2

I = 2 ππ→ ρρ 0.01 0.01 0.39 0.5 0.2 1.48

I =1 KK→K∗K∗ 0.01 0.01 0.31 0.61 0.22 1.18

I =1 KK∗ →K∗K∗ 0.01 0.01 0.07 0.95 0.21 1.09

I =3/2 πK→ ρK∗ 0.01 0.01 0.51 0.34 0.23 1.36

I =3/2 πK∗ → ρK∗ 0.01 0.02 0.22 0.49 0.22 1.32

I =3/2 ρK→ ρK∗ 0.01 0.01 0.26 0.62 0.21 1.38

I =3/2 πK∗ → ρK 0.01 0.01 0.15 1.25 0.21 1.58
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