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Description of 150Nd nucleus by a new alternative scheme *
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Abstract: A new scheme was recently proposed in which the usual SU(3) quadrupole-quadrupole interaction was

replaced by an O(6) cubic interaction in the Interacting Boson Model, and also successfully applied to the description

of 152Sm for the N =90 rare earth isotones with X(5) symmetry. By using this new scheme, in the present work,

we further explore the properties of another candidate of 150Nd for the N =90 with X(5) symmetry. The low-lying

energy levels and E2 transition rates are calculated and compared with the experimental data. The results show

that the new scheme can also reasonably describe the experimental low-lying spectrum and the intraband and the

interband E2 transitions for 150Nd. However, for the low-lying spectrum, the O(6) cubic interaction seems better in

describing the energy levels, especially in higher excited states and γ band, yet the 0+
2 level within the β band is lower

than the corresponding experimental value and the U(5)-SU(3) scheme seems better to describe the low-lying levels

of β band; and for the B(E2) transition, for the intraband transitions within the ground band and some interband

transitions between the β band and the ground band, the results from O(6) cubic interaction are better than those

from SU(3) quadrupole-quadrupole interaction, yet of which seems better to describe the intraband E2 transitions

within β band. The present work is very meaningful in helping us to understand in depth the new characteristics of

symmetry by the higher order O(6) cubic interaction.
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1 Introduction

The nature of shape phase transitions in finite many-
body systems is a fundamental issue and has been the
subject of many investigations [1–4]. Transitional nu-
clei experienced renewed interest over the last decade
and were extensively studied in the Interacting Boson
Model (IBM) [5–9]. It is now widely accepted that the
three limiting cases [10–12] of the theory correspond to
three different geometric shapes of nuclei, referred to as
spherical (vibrational limit with U(5) symmetry), axially
deformed (rotational limit with SU(3) symmetry), and
γ-soft (triaxial with O(6) symmetry), respectively. The
full range of the model can be parameterized in terms
of the Casten triangle [13]. Interesting phenomena occur
when a system falls between two limits of the theory, in
which case a quantum phase transition occurs at a criti-
cal point [14–16] where the dominance of one of the sym-
metries yields to the dominance of the other. Indeed, the
U(5)-SU(3) transitional description for Nd, Sm, Gd, and
Dy nuclei was first reported in Ref. [17]. Later on, the
X(5) symmetry at the critical point of this transition was

studied in Ref. [18], in which Iachello proposed analytical
solutions of a Bohr Hamiltonian in the situation appro-
priate for the description of nuclei near the critical point
of the spherical to axially deformed shape-phase transi-
tion. Casten and Zamfir showed in Ref. [19] that 152Sm
and other N =90 isotones demonstrate these character-
istics. Transitional patterns from the spherical, U(5), to
the axially deformed, SU(3), limit of the IBM with a
schematic Hamiltonian were studied in Refs. [20–22]; in
particular, the transitional behavior of some physically
relevant quantities across the entire span of the U(5)-
SU(3) transitional region were explored.

In fact another new idea was first suggested by van
Isacker [23], in which the quantum phase transitional
behavior for an alternative characterization of the spher-
ical to axially deformed shape-phase transition was an-
alyzed. In Ref. [23], the well-known SU(3) quadrupole-
quadrupole interaction in the schematic Hamiltonian
(U(5)-SU(3) scheme) is replaced by the O(6) [Q̂(0)×
Q̂(0)×Q̂(0)]0 cubic interaction, where Q̂µ(0)=s†d̃µ+d†

µs
is generator of the O(6) algebra. This idea was then
further confirmed by Thiamova and Cejnar [24]. From
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these investigations one understands that similar results
may be realized when the quadratic scalar formed with
the U(5)-SU(3) quadrupole operator is replaced by the
cubic scalar formed with the quadrupole interaction of
the O(6) limit. Inspired by this new idea, in our very
recent work [25], a systematic investigation of this al-
ternative scheme was dynamically investigated, in which
the transitional behaviors of the low-lying energy lev-
els, eigenstates, isomer shifts, E2 transition rates, and
expectation values of shape variables across the entire
transitional region are all examined. A comparison with
outcomes of the usual U(5)-SU(3) transitional descrip-
tion shows that the spherical to axially deformed shape-
phase transition can also be described within this alter-
native context, especially near the critical point. The
results show that the transition with the O(6) cubic in-
teraction (UQ scheme) is considerably smoother than the
U(5)-SU(3) case, but with the nuclear shape less well
defined, even in the axially deformed limit. It is also
shown that the new scheme can also reasonably describe
the low-lying spectrum and E2 transition rates of 152Sm
for N =90, and the new scheme seems better than the
usual U(5)-SU(3) scheme in describing the properties of
152Sm with the X(5) symmetry.

The purpose of the present study is to further in-
vestigate another candidate of N=90 rare earth isotones
with X(5) symmetry. The low-lying energy levels and
the intraband and the interband E2 transitions relat-
ing ground, β, and γ bands for 150Nd will be calcu-
lated within both the original U(5)-SU(3) scheme and
UQ scheme, and compared with the experimental data.
We will show that the typical quantities in the new UQ
scheme, including the low-lying spectrum and E2 transi-
tions for 150Nd, indeed display almost the same tran-
sitional patterns as found in the original U(5)-SU(3)
scheme. The analysis will further confirm that the O(6)
cubic interaction can play a role similar to that of the
SU(3) quadrupole-quadrupole interaction.

2 Hamiltonian

It is well known that the consistent-Q Hamilto-
nian [26] can be used to describe the most general situ-
ation in the IBM, which is given by

ĤQ=c1

[
xn̂d+

x−1

f1(N)
Q̂(χ)·Q̂(χ)

]
, (1)

where N is the total number of bosons, n̂d is the number
operator for counting d-bosons, Q̂µ(χ) = (d†s+s†d̃)(2)

µ
+

χ(d†d̃)(2)
µ

, x and χ are control parameters, f1(N) is a lin-
ear function of N , and c1 is the scaling factor. Therefore,
three limited situations of the model are given by x=1
for the U(5), x=0 and χ=0 for the O(6), and x=0 and

χ=−
√

7

2
for the SU(3), respectively.

2.1 For U(5)-SU(3) scheme

The original U(5)-SU(3) scheme [20] is the special

case of the consistent-Q formalism (1) with χ = −
√

7

2
,

which is suitable to describe the spherical to axially de-
formed shape phase transition, thus the Hamiltonian is
given by

Ĥ1=c1

[
xn̂d+

(x−1)

f1(N)
Q̂(−

√
7/2)·Q̂(−

√
7/2)

]
, (2)

where f1(N) is a linear function of N , and as shown
in Refs. [18, 20, 27], the critical point xc will be differ-
ent for different choices of the function f1(N), we adopt
f1(N)=4N as used in Refs. [18, 20, 27]. Also, parameter
c1>0 is the scaling factor, x is the control parameter of
the U(5)-SU(3) scheme with 06x61.

The B(E2) transition is a very sensitive signature of
the structure. The B(E2) reduced transition probability
is defined by

B(E2;Li→Lf)=
|〈Lf‖T (E2)‖Li〉|2

2Li+1
. (3)

Here the T (E2) operator in the U(5)-SU(3) scheme is
chosen to be the same as that used in Ref. [20] with

Tµ(E2)=q1Q̂µ(−
√

7/2), (4)

where

Q̂µ(−
√

7/2)=(s†d̃µ+d†
µs)−

√
7/2(d†d̃)(2)µ (5)

is the SU(3) generator, and q1 is the effective charge.

2.2 For UQ scheme

Alternatively, in the UQ scheme, the suitable Hamil-
tonian to describe the same shape phase transition in
this region is given by

Ĥ2=c2

[
yn̂d+

(1−y)

f2(N)
[Q(0)×Q(0)×Q(0)]0

]
, (6)

where parameter c2>0 is the scaling factor, y is the con-
trol parameter of the UQ scheme with 06y61, f2(N) is
a quadratic function of N . The critical point yc will be
different for different choices of the function f2(N), and
we adopt f2(N)=0.8N 2 as used in Ref. [25] which puts
the critical point yc of the UQ scheme close to xc of the
U(5)-SU(3) scheme.

The T (E2) operator in the UQ scheme is chosen to
be

Tµ(E2)=q2Q̂µ(0), (7)

where

Q̂µ(0)=s†d̃µ+d†
µs (8)

is the O(6) quadrupole operator and q2 is the effective
charge.
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2.3 How to solve the equation

In order to diagonalize Hamiltonians (2) and (6), we
expand the corresponding eigenstates in terms of the
U(6)⊃SU(3)⊃SO(3) basis vectors |N(λµ)KL〉 as

|NLξ〉=
∑

(λµ)K

C
Lξ

(λµ)K |N(λµ)KL〉, (9)

where ξ is used to denote the ξ-th level with angular
momentum quantum number L, and the C

Lξ

(λµ)K are ex-
pansion coefficients. Since the total number of bosons
N is fixed for a given nucleus, the eigenstates given in
Eq. (9) are also denoted |Lξ;z〉 with z=x for the U(5)-
SU(3) scheme or z=y for the UQ scheme in the following,
where the value of the control parameter z is explicitly
shown. In our calculations, the orthonormalization pro-
cess [28, 29] with respect to the additional quantum num-
ber K needed to label the basis vectors of SU(3)⊃SO(3)
and the phase convention for the U(6)⊃SU(3) basis vec-
tors proposed in Ref. [30] are adopted. By using analytic
expressions for U(6)⊃SU(3) reduced matrix elements of
the d-boson creation or annihilation operator [30] and
an algorithm [28, 29] for generating the SU(3)⊃SO(3)
Wigner coefficients, the eigenequation that simultane-
ously determines the eigenenergy and the corresponding
set of the expansion coefficients C

Lξ

(λµ)K can be estab-
lished, with results that can then be used to calculate
physical quantities in both schemes.

3 Results and discussion

In order to demonstrate that the UQ scheme indeed
serves as an alternative description of the spherical to
axially deformed phase transition, recently we have sys-
tematically investigated the possible X(5) candidate of
152Sm for N =90, and shown that the new scheme can in-
deed reasonably describe the low-lying spectrum of 152Sm
and E2 transition rates with the X(5) critical point sym-
metry [25] .

Now in this subsection, another possible X(5) sym-
metry candidate, 150Nd nucleus, will be further investi-
gated by the new UQ scheme, of which the results are
compared with the experimental data [31–34] and those
obtained from the U(5)-SU(3) scheme. In the follow-
ing, we present the calculated results in both U(5)-SU(3)
and UQ schemes, including some low-lying energy levels,
the intraband and the interband E2 transitions relating
ground, β, and γ bands. Since the proton number is 60
and the neutron number is 90, so the total number of
bosons for 150Nd is N =9. In the calculation, the taken
value of x for the U(5)-SU(3) scheme and y for the UQ
scheme will be decided by the experimental low-lying
levels of 150Nd.

Firstly, the low-lying levels will be directly obtained
for 150Nd by solving the Hamiltonian (2) for U(5)-SU(3)

scheme or Hamiltonian (6) for UQ scheme.
We must choose the parameters. In order to achieve

global quality of fits to low-lying spectrum, the parame-
ters c1 and x for the U(5)-SU(3) scheme, or parameters
c2 and y for the UQ scheme, are chosen when the mean-
square deviation for excitation energies

σ(E)=

√√√√
N1∑

i

|Ei
exp−Ei

th|2/N1, (10)

reaches the corresponding minimum, where Ei
th, and

Ei
exp are energy of the i-th level calculated, and that of

the corresponding experimental value, respectively, and
N1 is the total number of levels fitted.

In Table 1, we show the calculated results from both
the U(5)-SU(3) scheme and the UQ scheme of low-lying
excitation energies E(L+

i ) (in keV) normalized to the
2+

1 state, and the corresponding mean-square deviation
σ(E) for excitation energies. It is shown that σ(E) devi-
ation is 80 keV and 72 keV for U(5)-SU(3) scheme and
the UQ scheme, respectively, indicating that the overall
fitting of low-lying excitation energies from UQ scheme is
better than those of U(5)-SU(3) scheme. This can also
be clearly seen in Fig. 1, in which the low-lying levels
from the ground band, β and γ bands are drawn, the ex-
perimental data and the calculated results of U(5)-SU(3)
scheme and UQ scheme are represented, respectively. We
can see that both the U(5)-SU(3) scheme and the UQ
scheme can reasonably describe the low-lying levels of
150Nd. However, the UQ scheme seems better in describ-
ing the low-lying spectrum, especially in higher excited
levels and γ band, yet the 0+

2 level is lower than the corre-
sponding experimental value, indicating that the U(5)-
SU(3) scheme seems better to describe the levels of β

band.

Table 1. The energy levels (in keV) for 150Nd.

E(L+
i )

L
+
i Exp. [33, 34] U(5)-SU(3) UQ

2+
1 130.2 130.2 130.2

4+
1 381.1 382.0 381.7

6+
1 720.4 741.1 736.4

8+
1 1129.6 1198.0 1171.2

10+
1 1598.5 1746.4 1659.4

0+
2 675.9 610.7 460.1

2+
2 850.8 879.9 790.5

4+
2 1137.8 1245.0 1165.2

2+
3 1062.1 1090.6 1058.7

4+
3 1350.5 1510.2 1379.1

σ(E) 80.0 72.0

Secondly, B(E2) transition, as another quantity
which acts as a sensitive signature of the structure, will
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be further studied. In fact in Ref. [34] the experimental
reduced transition probabilities in 150Nd were obtained
and compared to the predictions of the critical point sym-
metry X(5) of the phase shape transition that occurs for
the N =90 rare earth isotones, and very good agreement
was observed, revealing this as the case for the realiza-
tion of the X(5) symmetry.

Fig. 1. The energy levels for 150Nd.

Here in the present work, we will use both the U(5)-
SU(3) scheme and the UQ scheme to study the B(E2)
transition. The values of the intraband and the inter-
band E2 transitions relating ground, β, and γ bands
will be calculated for 150Nd using the above constructed
E2 transition operators from Eq. (4) and Eq. (7) for
U(5)-SU(3) scheme and the UQ scheme, respectively.
In Table 2, we list the E2 transitions of experimental
data [31–34] and calculated results from both the U(5)-
SU(3) scheme and the UQ scheme for 150Nd, in which the
B(E2) values (in W.u.) are normalized to the 2+

1 → 0+
1

transition. The corresponding mean-square deviation

σ(BE2)=

√√√√
N2∑

i

|B(E2)i
exp−B(E2)i

th|2/N2, (11)

where N2 is the total number of transitions calculated
in the present work, and the deviation is 20.1 W.u. for
U(5)-SU(3) scheme and 25.6 W.u. for the UQ scheme.
It seems that both schemes can reasonably describe the
transition rates of 150Nd, however the UQ scheme is bet-
ter in describing the intraband transitions within the
ground band, and some interband transitions between
the β band and the ground band. Yet the U(5)-SU(3)
scheme seems better in describing the intraband E2 tran-
sitions within the β band.

In Fig. 2, we shows some typical B(E2) values for
150Nd, the experimental data and calculated results
from both the U(5)-SU(3) scheme and the UQ scheme
are presented, where (a), (b), (c), and (d) represent
B(E2;4+

1 → 2+
1 ), B(E2;10+

1 → 8+
1 ), B(E2;2+

2 → 0+
1 ), and

B(E2;4+
2 →2+

1 ), respectively. It is clearly shown in Fig. 2
that the intraband transitions within the ground band,
B(E2;4+

1 → 2+
1 ) and B(E2;10+

1 → 8+
1 ), the results from

UQ scheme are a little better than those from U(5)-
SU(3) scheme. While the interband transitions between
the β band and the ground band, B(E2;2+

2 → 0+
1 ) and

B(E2;4+
2 → 2+

1 ), especially the B(E2;2+
2 → 0+

1 ) transi-
tion calculated from the two schemes are different. From
Table 2, the experimental data for B(E2;2+

2 →0+
1 ) tran-

sition is 0.7 W.u., however the calculated result from
U(5)-SU(3) scheme is 0.03 W.u., one order of magnitude
smaller than the experimental data. It is improved quite
a lot with the result of 0.16 W.u. in the UQ scheme.

Table 2. The B(E2) values (in W.u.) normalized
to the 2+

1 →0+
1 transition for 150Nd.

B(E2)
L

+
i →L

+
f Exp. U(5)-SU(3) UQ

2+
1 →0+

1 116.0 116.0 116.0

4+
1 →2+

1 180.7 172.8 173.7

6+
1 →4+

1 206.0 190.8 192.0

8+
1 →6+

1 216.0 192.6 195.0

10+
1 →8+

1 201.0 182.8 188.2

2+
2 →0+

2 113.9 71.0 56.6

4+
2 →2+

2 170.2 108.5 89.7

0+
2 →2+

1 39.1 44.3 32.1

2+
2 →0+

1 0.7 0.03 0.16

2+
2 →2+

1 10.0 8.6 7.82

2+
2 →4+

1 19.0 15.0 8.06

4+
2 →2+

1 0.015 0.067 0.044

4+
2 →4+

1 7.015 6.7 10.61

4+
2 →6+

1 9.2 9.86 2.51

2+
3 →0+

1 3.0 2.23 12.15

2+
3 →2+

1 >2.9 1.77 14.48

2+
3 →4+

1 1.7 4.18 4.20

σ(BE2) 20.1 25.5

Fig. 2. B(E2) values calculated from the U(5)-
SU(3) scheme and the UQ scheme and the corre-
sponding experimental data of 150Nd, and where
(a) B(E2;4+

1 → 2+
1 ), (b) B(E2; 10+

1 → 8+
1 ), (c)

B(E2; 2+
2 →0+

1 ), (d) B(E2; 4+
2 →2+

1 ).
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Because the value of B(E2;2+
2 → 0+

1 ) from the U(5)-
SU(3) scheme is too small in comparison with the ex-
perimental data, it seems that the result from the UQ
scheme is much better than those from the U(5)-SU(3)
scheme in describing this intraband transition.

4 Conclusion

In the present work, the quantum phase transitional
behavior of an alternative characterization of the spheri-
cal to axially deformed shape-phase transition in IBM is
further explored, in which the usual SU(3) quadrupole-
quadrupole interaction is replaced by an O(6) cubic in-
teraction. We apply this alternative scheme to further
investigate another candidate 150Nd of N=90 with X(5)
symmetry. The low-lying energy levels and E2 transi-
tions are calculated and compared with the experimental
data, and the results show that the new scheme can also
reasonably describe the experimental low-lying spectrum
and E2 transitions for 150Nd. Thus the UQ scheme can
display almost the same transitional patterns as found
in the original U(5)-SU(3) scheme. Our analysis con-
firms that the O(6) cubic interaction can indeed play a
role similar to that of the SU(3) quadrupole-quadrupole
interaction.

However, for the low-lying spectrum, the UQ scheme

seems better in describing the energy levels, especially
in higher excited levels and γ band, yet the U(5)-SU(3)
scheme seems better to describe the β band; and for
the B(E2) transition, the results of the intraband transi-
tions within the ground band from the UQ scheme seem
better than those from the U(5)-SU(3) scheme, the UQ
scheme can also improve some interband transitions be-
tween the β band and the ground band. Yet the U(5)-
SU(3) scheme seems better to describe the intraband E2
transitions within β band.

Indeed, as shown in the application of the U(5)-
SU(3) and UQ schemes to the critical point symme-
try candidate, 150Nd, the overall fitting quality of the
UQ scheme is almost similar to that of the U(5)-SU(3)
scheme. As has been stated in Ref. [23], whether the O(6)
cubic interaction in place of the usual SU(3) quadrupole-
quadrupole interaction is required in the deformed limit
is not clear at the moment since comprehensive phe-
nomenological studies of this question are still lacking,
hence it is our aim to provide more theoretical stud-
ies by the O(6) cubic interaction in comparison with
the SU(3) quadrupole-quadrupole interaction and exper-
imental data. It is important that more candidates with
X(5) symmetry should be further explored along this
idea to help us understand deeply the new characteristics
of symmetry by the higher order O(6) cubic interaction.
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