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Abstract: The light scalar mesons below 1 GeV configured as tetraquark systems are studied in the framework

of the flux-tube model. Comparative studies indicate that a multi-body confinement, instead of the additive two-

body confinement, should be used in a multiquark system. The σ and κ mesons could be well accommodated in

the diquark-antidiquark tetraquark picture, and could be colour-confinement resonances. The a0(980) and f0(980)

mesons are not described as KK̄ molecular states and nsn̄s̄ diquark-antidiquark states. However, the mass of the

first radial excited state of the diquark-antidiquark state, nnn̄n̄ is 1019 MeV, is close to the experimental data of the

f0(980).
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1 Introduction

The charged κ, a scalar meson, was recently observed
by the BES collaboration [1]. The Breit-Wigner mass
and the decay width were found to be 826±49+49

−34 MeV
and 449±156+144

−81 MeV, and the pole position was de-
termined to be (764±63+71

−54)−i(306±149+143
−85 ) MeV/c2.

These are in good agreement with those of the neutral κ,
whose mass and decay widths are 878±23+64

−55 MeV and
499±53+55

−87 MeV, respectively, as observed by the BES
and other collaborations [2].

The understanding of scalar mesons, which have the
same quantum numbers as the vacuum, is a crucial
problem in low-energy quantum chromodynamics (QCD)
since they could shed light on the chiral symmetry break-
ing mechanism, and presumably also on confinement in
QCD. Although many of the properties of scalar mesons
have been studied for decades, the understanding of the
internal structure of scalar mesons is still a puzzle. Their
masses do not fit into the quark model predictions [3, 4].
The flavor structures of these light scalar mesons below
1 GeV, a0(980), f0(980), σ and κ, are still an open ques-
tion. In the qq̄ configuration, the p-wave relative motion
between q and q̄ has to be invoked to account for the
spin and parity of the scalar mesons. This leads to much
higher masses for them. Another possible configuration
for scalar mesons is a tetraquark state. In the tetraquark

configuration, the light scalar mesons could be classified
into an SU(3) flavor nonet if the diquark picture is used
[5–8]. Their quark contents can be expressed as

σ = [ud][ūd̄], f 0
0 =

[su][s̄ū]+[sd][s̄d̄]√
2

;

κ+ = [ud][d̄s̄], κ̄+=[ds][ūd̄], κ0=[ud][ūs̄], κ̄0=[us][ūd̄];

a+
0 = [su][s̄d̄], a0

0=
[su][s̄d̄]−[sd][s̄ū]√

2
, a−0 =[sd][s̄ū].

Jaffe et al. interpreted light scalar mesons as tetraquark
states with all the relative orbital angular momenta as-
sumed to be zero [5–11]. Weinstein et al. described
light scalar mesons as hadronic molecular states due to
strong meson-meson interaction [12–19]. The properties
of some of these light scalar mesons were also studied
in the qq̄ picture [20–22]. The spectrum of light scalar
mesons below 1.0 GeV were studied in the qq̄ picture
by including instanton interaction [23]. Bhavyashri et
al. studied the instanton-induced interaction in the light
meson spectrum on the basis of the phenomenological
harmonic models for quarks [24]. Vijande et al. studied
the scalar mesons in terms of the mixing of a chiral nonet
of tetraquarks with conventional qq̄ states [25, 26].

A multi-quark state is quite different from ordinary
hadrons (qq̄ mesons and qqq baryons) because the multi-

Received 31 March 2012, Revised 13 October 2012

∗ Supported by National Natural Science Foundation of China (11047140, 11175088, 11035006) and Ph.D Program Funds of Chongqing
Jiaotong University

1) E-mail: jlping@njnu.edu.cn, (corresponding author)
©2013 Chinese Physical Society and the Institute of High Energy Physics of the Chinese Academy of Sciences and the Institute of

Modern Physics of the Chinese Academy of Sciences and IOP Publishing Ltd

033101-1



Chinese Physics C Vol. 37, No. 3 (2013) 033101

quark state has more color structures than those of ordi-
nary hadrons. The color structures of a multi-quark state
are no longer trivial and the properties of multi-quark
states may be sensitive to the hidden color structure. A
tetraquark state, if its existence is confirmed, may pro-
vide important information about the low-energy QCD
interaction which is absent from the ordinary hadrons.
Some authors have studied the tetraquark system with
the three-body qqq̄ and qq̄q̄ interaction [27, 28], and ex-
otic hadrons have also been studied as multiquark states
in the flux-tube model in our previous work [29, 30].
These studies suggest that the multi-body confinement,
instead of the additive two-body confinement, might be
more suitable in the quark model study of multiquark
states. The newly updated experimental data might
shed more light on the possibility of the existence of
tetraquark states and QCD interaction for multi-quark
states.

The aim of this paper is to study the properties of
scalar mesons below 1 GeV in the flux-tube model with
multi-body confinement potential. The powerful method
for few-body systems with high precision, the Gaussian
expansion method (GEM) [31], is used here. The paper
is organized as follows: in Section 2, the flux-tube model
with multi-body interaction is introduced. A brief intro-
duction of GEM and the construction of the wave func-
tions of tetra-quark states are given in Section 3. The
numerical results and discussions are presented in Sec-
tion 4, and a brief summary is given in the last section.

2 Quark model and multi-body confine-

ment potential

Long-term studies on hadrons in the past several
decades indicate that ordinary hadrons (qq̄ mesons and
qqq baryons) can be well described by QCD-inspired
quark models. Low-energy QCD phenomena are domi-
nated by two well known quark correlations: confinement
and chiral symmetry breaking. The perturbative, effec-
tive one-gluon exchange properties of QCD should also
be included. Hence, the main ingredients of the quark
model are: constituent quarks with a few hundred MeV
effective mass, phenomenological confinement potential,
effective Goldstone bosons, and one-gluon exchange be-
tween these constituent quarks.

For ordinary hadrons, their color structures are
unique and trivial. Naive models based on two-body
color confinement interactions proportional to the color
charges λi ·λj can describe the properties of ordinary
hadrons well. However, the structures of a multiquark
state are abundant [29, 30, 32], which include important
QCD information that is absent from ordinary hadrons.
There is no theoretical reason to directly extend the two-
body confinement in the naive quark model to a multi-

quark system. Furthermore, the direct application of the
two-body confinement to the multi-quark system induces
many serious problems, such as anti-confinement [27]
and color Van der Waals force. Much theoretical work
has been done to try to amend these serious drawbacks.
The string flip model for multi-quark systems was pro-
posed by M. Oka to avoid the pathological Van der Waals
force [33, 34]. Three-quark confinement is explored by
introducing strings which connect quarks according to a
certain configuration rule.

Recent lattice QCD studies [35–37] show that the
confinement of multi-quark states is a multi-body inter-
action and is proportional to the minimum of the total
length of strings which connect the quarks to form a mul-
tiquark state. Based on these studies, a naive flux-tube
or string model [29, 30, 32] with multi-body confinement
has been proposed for the multiquark systems. The har-
monic interaction approximation, i.e., the total length
of the strings is replaced by the sum of the square of
the string lengths, is assumed to simplify the numerical
calculation.

The diquark-antidiquark picture of tetraquark states
has been discussed by several authors [3, 38–40]. In the
present work, the scalar mesons below 1 GeV are studied
as diquark-antidiquark systems in the flux-tube model.
Two color structures for a tetraquark state are shown
in Fig. 1, where the solid dot represents a quark, while
the hollow dot represents an antiquark. ri is the quark’s
position and yi represents a junction where three strings
(flux tubes) meet. A thin line connecting a quark and a
junction (an antiquark) represents a fundamental repre-
sentation, i.e. color triplet. A thick line connecting two
junctions is for a color sextet or other representations,
namely a compound string. The different types of string
may have different stiffnesses [41–43]. In Fig. 1(b), color
couplings satisfying the overall color singlet of the tetra-
quark are [[qq]3̄[q̄q̄]3]1 and [[qq]6[q̄q̄]6̄]1. The subscripts
represent the dimensions of the color representations.

Fig. 1. Two-color structures for a tetraquark state.

In the flux-tube model with quadratic confinement
potential, which is believed to be flavor independent,
the tetraquark state with a diquark-antidiquark struc-
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ture has the following form [29],

V CH = k [(r1−y1)
2+(r2−y1)

2+(r3−y2)
2

+ (r4−y2)
2+κd(y1−y2)

2], (1)

where k is the stiffness of the string with the fundamen-
tal representation 3, which is determined by the meson
spectrum, and kκd is the compound string stiffness. The
compound string stiffness parameter κd [43] depends on
the color representation, d, of the string,

κd=
Cd

C3

, (2)

where Cd is the eigenvalue of the Casimir operator as-
sociated with the SU(3) color representation d of the

string. C3=
4

3
, C6=

10

3
and C8=3.

For given quark positions ri (i=1,··· ,4), we can fix
the positions of the junctions yi (i=1,2) by minimizing
the energy of the system. After fixing yi, a set of canoni-
cal coordinates, Ri (i=1,···,4), is introduced to simplify
the expressions of the potential, which are read as,

R1 =

√

1

2
(r1−r2), R2=

√

1

2
(r3−r4),

R3 =

√

1

4
(r1+r2−r3−r4), (3)

R4 =

√

1

4
(r1+r2+r3+r4).

Therefore, the minimum of the confinement interaction
has the following form,

V CH
min = k

(

R2
1+R2

2+
κd

1+κd

R2
3

)

. (4)

Taking into account the potential energy shift, the con-
finement potential V C

min used in the present calculation
has the following form

V CH
min =k

[

(R2
1−∆)+(R2

2−∆)+
κd

1+κd

(R2
3−∆)

]

. (5)

Carlson and Pandharipande also considered a similar
flux-tube energy shift, which they assumed to be pro-
portional to the number of quarks N [44]. Obviously,
the confinement potential V C is a multi-body interac-
tion rather than a two-body interaction. It should be
emphasized here that our approach is different from that
in Iwasaki’s work [45], where the four-body problem is
simplified to a two-body one by treating the diquark as
an antiquark and antidiquark as a quark.

With regard to the mesons f0(980) and a0(980), these
are also interpreted as KK̄ molecular states with I = 0
and I=1, respectively [12–19]. In the flux-tube model,
the confinement potential of the KK̄ molecular states can
be written as

V CM
min =k [((r1−r3)

2−∆)+((r2−r4)
2−∆)], (6)

where q1 (q2) and q̄3 (q̄4) compose a K (K̄) meson, see
Fig. 1(b). In fact, the mesons f0(980) and a0(980), if they
are really tetraquark systems, should be the superposi-
tion of the diquark-antidiquark state and KK̄ molecular
state. When two mesons, K and K̄, are largely sepa-
rated, the dominant component of the system should be
two isolated color singlet mesons, because other hidden
color flux-tube structures are suppressed due to a con-
finement. With the separation reduction, a loose KK̄
molecular state may be formed if the attractive force be-
tween KK̄ is strong enough. In particular, when they
are close enough to be within the range of a confinement
(about 1 fm), the diquark-antidiquark state and the KK̄
molecular state may appear due to the excitation and
rearrangements of flux tubes and junctions. In this case,
the confinement potential of a tetraquark system, nsn̄s̄,
should be taken to be the minimum of two flux-tube
structures. It reads

V C
min=min

[

V CM
min ,V

CH
min

]

. (7)

The other parts of the Hamiltonian are the rest
masses, kinetic energies, one-gluon-exchange potential
and Goldstone-boson-exchange potentials [29],

H =
4

∑

i=1

(

mi+
p2

i

2mi

)

−TCM+V C+
4

∑

i>j

(V G
ij +V B

ij ), (8)

V B
ij = vπ

ij

3
∑

a=1

F a
i F

a
j +vK

ij

7
∑

a=4

F a
i F

a
j +vη

ij(F
8
i ·F 8

j cosθP−F 0
i ·F 0

j sinθP), (9)

vχ

ij =
g2
ch

4π

m3
χ

12mimj

Λ2
χ

Λ2
χ
−m2

χ

σi·σj

[

Y (mχrij)−
Λ3

χ

m3
χ

Y (Λχrij)

]

, χ=π,K,η. (10)

V G
ij =

αs

4
λc

i ·λc
j

[

1

rij

−
π

2
δ(rij)

(

1

m2
i

+
1

m2
j

+
4

3mimj

σi·σj

)]

, (11)

033101-3



Chinese Physics C Vol. 37, No. 3 (2013) 033101

where TCM is the center-of-mass kinetic energy, and Fi,λi

are the flavor, color SU3 Gell-Mann matrices. Y (x) is the
standard Yukawa function, and all other symbols have
their usual meanings. The δ-function should be regular-
ized [46, 47]

δ(rij)=
1

4π

e−rij/r0(µ)

rijr20(µ)
, (12)

where µ is the reduced mass of qi and qj , and r0(µ) =
r̂0/µ. The effective scale-dependent strong coupling con-
stant is given by [47]

αs(µ)=
α0

ln

[

µ2+µ2
0

Λ2
0

] . (13)

3 Wave functions and the Gaussian ex-

pansion method

The total wave function of a diquark-antidiquark
state can be written as a sum of the following direct
products of color, isospin and spatial-spin terms,

Φ[qq][q̄q̄]
IJTMT

=
∑

l,s,c,I

ξl,s,c,I

[[

[

φG
l1m1

(r)ηs1ms1

]

J1M1

×
[

ψG
l2m2

(R)ηs2ms2

]

J2M2

]

J12M12

×χG
LM (X)

]

JTMT

[

ηi1mi1
ηi2mi2

]

I

×[χc1w1
χc2w2

]
1
. (14)

Here, I and JT are the total isospin and total angular
momentum, respectively. ηs1ms1

(ηs2ms2
), ηi1mi1

(ηi2mi2
)

and χc1w1
(χc2w2

) are the spin, flavor and color wave
functions of the diquark (antidiquark), respectively. [ ]’s
denote the Clebsh-Gordan coefficients coupling. The
coefficient ξIJT

l,s,i,c,L is determined by diagonalizing the
Hamiltonian, and subscripts l, s, i, c, and L represent
all the possible intermediate quantum numbers, therefore
our calculations are multi-channel coupling calculations.
The Jacobi coordinates of the tetraquark are defined as

r = r1−r2, R=r3−r4,

X =
m1r1+m2r2

m1+m2

−
m3r3+m4r4

m3+m4

, (15)

RCM =
m1r1+m2r2+m3r3+m4r4

m1+m2+m3+m4

,

where particles 1 and 2 are two quarks and particles 3
and 4 are two antiquarks. L, l1 and l2 are the orbital
angular momenta associated with the coordinates of X,
r and R, respectively. The calculation is done in the
center-of-mass coordinate system (RCM=0). The tetra-
quark state is an overall color singlet with well defined

parity P =(−1)l1+l2+L, isospin I and total angular mo-
mentum JT. For scalar mesons, we set the angular mo-
mentum L, l1 and l2 to be zero.

For the color part, the color singlet is constructed in
the following two ways: χ1

c = 3̄12 ⊗ 334, χ
2
c = 612 ⊗ 6̄34;

both “good” diquark and “bad” diquark are included.
With respect to the flavor part, the flavor wave func-
tion reads as ηI =η12⊗η34. Taking into account all de-
grees of freedom, the Pauli principle must be satisfied
for each subsystem of the identical quarks or antiquarks.
To obtain a reliable solution to the few-body problem, a
high-precision method is indispensable. In this work, the
GEM [31], which has been proven to be rather powerful
in solving the few-body problem, is used to perform the
calculations. In GEM, three relative motion wave func-
tions are written as,

φG
l1m1

(r) =

n1max
∑

n1=1

cn1
Nn1l1r

l1e−νn1
r2

Yl1m1
(r̂),

ψG
l2m2

(R) =

n2max
∑

n2=1

cn2
Nn2l2R

l2e−νn2
R2

Yl2m2
(R̂),

χG
LM (X) =

n3max
∑

n3=1

cn3
NLMX

Le−νn3
X2

YLM (X̂).

The Gaussian size parameters are taken as the following
geometric progression numbers

νn=
1

r2n
, rn=r1a

n−1, a=

(

rnmax

r1

) 1

nmax−1

. (16)

Within the framework of the flux-tube model, the
wavefunctions of a KK̄ molecular state can be expressed
as

ΦKK̄
IJTMT

=
∑

M,S,I

ξM,S,I

[[

φG
K(r)ψG

K̄(R)χG
LM (X)

]

× ηS]JTMT
ηIχc. (17)

The details of the wavefunctions are omitted and are
similar to those of a diquark-antiquark state.

4 Numerical results and discussions

Now we turn to the calculation of tetraquark states
with diquark-antiquark structures. The model parame-
ters are fixed by reproducing the ordinary meson spec-
trum and are listed in Table 1. the meson spectrum can
be reproduced very well. Because the flux-tube model is
reduced to the ordinary quark model for a qq̄ system, the
obtained meson spectra (from light to heavy) are similar
to those found in other work, e.g. Ref. [47]. Parts of
the calculated meson spectra are shown in Table 2. The
experimental values are taken from the PDG compila-
tion [48].
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Table 1. The model parameters (Set I). The masses of π,K,η take the experimental values.

m/MeV ms/MeV k/(MeV·fm−2) r̂0/(MeV·fm) Λ0/fm−1 µ0/fm−1 ∆/fm2 α0 Λπ/fm−1 ΛK=Λη/fm−1 θP/(◦)

313 520 213.3 30.85 0.187 0.113 0.5 4.25 4.2 5.2 15

Table 2. The meson spectra (unit: MeV).

meson π K ρ K∗ ω φ

Cal. 139 502 761 897 735 1023

Exp. 139 496 770 898 780 1020
√

〈r2〉/fm 0.57 0.60 1.05 0.96 1.02 0.85

The energies of scalar meson states can be obtained
by solving the four-body Schrödinger equation

(H−E)ΦIJTMT
=0 (18)

with Rayleigh-Ritz variational principle. In GEM the
calculated results are converged with n1max=6, n2max=6
and n3max = 6. The minimum and maximum ranges of
the bases are 0.1 fm and 2.0 fm for coordinates r, R and
X, respectively.

The quark contents and corresponding masses in the
three different quark models for the light scalar mesons as
tetra-quark states are shown in Table 3, where n stands
for a non-strange quark (u or d), s stands for a strange
quark, I and N denote the total isospin and principal
quantum number of the total radial excitation, and S,
L and J have their usual meanings. “Naive” stands for
the naive quark model, where only one-gluon-exchange
potential is taken into account in addition to the ad-
ditive two-body confinement [49]. “Chiral” stands for
the chiral quark model, where one-gluon-exchange and
one-Goldstone-boson-exchange are included besides the
additive two-body confinement [47]. The masses in the
naive and chiral model are much higher (several hundred
MeV) than those in the flux-tube model. The origin of
this discrepancy mainly comes from the different type of
confinement interaction, a two-body confinement poten-
tial is applied in the naive and chiral model, whereas a
multi-body interaction confinement is used in the flux-
tube mode. Zou et al. studied scalar mesons in the
quark model by introducing three-body confinement in-
teraction. Their study also indicates that the multi-body
confinement potential, instead of two-body interaction,
should be applied in the study of multi-quark states [50].
The naive quark model gives the highest masses, due to
the absence of Goldstone boson exchange, which induces
additional attraction for the tetraquark system.

In the framework of the flux-tube model, it can be
seen from Table 3 that the lowest masses of the nnn̄n̄
and nnn̄s̄ systems are 587 MeV and 948 MeV, which are
close to the masses of the σ and κ mesons. If the exis-
tence of the σ and κ mesons is further confirmed, then the
tetraquark state is a possible interpretation. This inter-

pretation is in agreement with many other studies [5–11].
Prelovsek et al. recently studied the light scalar mesons
σ and κ by lattice QCD simulation, and they also found
that σ and κ have sizable tetra-quark components, nnn̄n̄
and nnn̄s̄, respectively [51]. In order to check the depen-
dence of the numerical results on the model parameters,
we make the same calculations of scalar mesons with an-
other set of parameters, which are listed in Table 4 (the
unchanged parameters are not listed). A meson spec-
trum that is almost the same is obtained. The results
for the tetraquark states are shown in Table 5. Compar-
ing tables 4 and 5, our results are quite stable against
the variation in model parameters.

Table 3. The numerical results for three models
(unit: MeV).

flavour nnn̄n̄ nnn̄n̄ nnn̄n̄

IJP 00+ 00+ 10+

N2S+1LJ 01S0 11S0 01S0

naive 938 1431 1431

chiral 666 1237 1406

flux-tube 587 1019 1210

candidate σ f0(980)? —

mass 541±39 [? ] 980±10 [48]

flavour nnn̄s̄ nsn̄s̄ nsn̄s̄

IJP 1

2
0+ 00+ 10+

N2S+1LJ 01S0 01S0 01S0

naive 1216 1456 1456

chiral 1122 1454 1454

flux-tube 948 1314 1318

candidate κ — —

mass 826±49+49
−34 [1]

Table 4. The model parameters (Set /).

k/(MeV·fm−2) r̂0/(MeV·fm) ∆/fm2 α0

267 30.0 0.6 4.09

Table 5. The numerical results in the flux-tube
model (unit: MeV).

flavour nnn̄n̄ nnn̄n̄ nnn̄n̄ nnn̄s̄ nsn̄s̄ nsn̄s̄

IJP 00+ 00+ 10+ 1
2
0+ 00+ 10+

N2S+1LJ 01S0 11S0 01S0 01S0 01S0 01S0

flux-tube 531 969 1180 908 1270 1275
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The σ and κ mesons, if they have diquark-antidiquark
structures, cannot decay into two colorful hadrons di-
rectly due to color confinement. They must transform
into color singlet mesons by means of breaking and
rejoining flux tubes before decaying into color singlet
mesons. This decay mechanism is similar to the com-
pound nucleus formation and therefore should induce a
resonance, which is named a “color confined, multi-quark
resonance” state [30, 52]. The large decay width of the
σ and κ mesons may be qualitatively explained if the ar-
rangement and rupture of the flux tubes are fast enough.
The systematic investigation of the decay is left for fu-
ture work.

In the case of the f0(980) and a0(980) mesons, many
theoretical studies assumed them to be tetra-quark states
with quark content nsn̄s̄ and isospin I=0 and I=1, re-
spectively. The masses for the tetraquark states nsn̄s̄ are
much higher, about 300 MeV, than the experimental val-
ues, even in the flux-tube model; see Table 3 and Table 5.
Therefore, their main components do not seem to be the
tetraquark state nsn̄s̄ in the quark models. Instead, the
mass of the first radial excited state of the nnn̄n̄ state
is 1019 MeV, which is close to the mass of the f0(980)
meson. Taking the f0(980) meson as the nnn̄n̄ state is
consistent with Vijande’s work on the nature of scalar
mesons [25]. The observed f0(980)→KK̄ process can be
explained by the mixing of the nnn̄n̄, nsn̄s̄ and ss̄ et al.
strange quark components [25]. This work is being done
in our group. Peláez also suggested that three scalar
mesons, σ, κ and f0(980), have dominant tetraquark com-
ponents, whereas the a0(980) meson might be a more
complicated system [53], which is also consistent with
our results.

The other well known interpretations of the f0(980)
and a0(980) mesons are the KK̄ bound states with isospin
I = 0 and I = 1, respectively, because the experimental
values are very close to the threshold of two mesons,
K and K̄. Within the quark models, the interactions
between two quarks related to the color and spin fac-
tors, λi ·λj and σi ·σj , are zero between the K and K̄
mesons, therefore it is hard for the KK̄ bound state to
be formed. The coupling calculations on the diquark-
antidiquark state and the KK̄ state indicate that the
KK̄ bound state still cannot be formed. The arguments
for this are: (i) the interactions between K and K̄ are

equal to zero, and the coupling interaction between the
diquark-antidiquark state and the KK̄ state is weak; and
(ii) the relative kinetic energy between two mesons, K
and K̄, is not small due to the small mass of the K (K̄)
meson. These two factors are not beneficial to forming
a bound state.

5 Summary

The comparative studies of the three quark models
on light scalar mesons indicate that a multibody con-
finement potential, instead of a two-body confinement
potential proportional to a color factor, plays an impor-
tant role in a multiquark state, which can reduce the
energy of a multiquark state because it avoids the ap-
pearance of anti-confinement in color symmetrical quark
(antiquark) pairs.

In the flux-tube model, the σ and κ mesons can be as-
signed as diquark-antidiquark states nnn̄n̄ and nnn̄s̄ with
JP =0+, respectively, which can be named as “color con-
fined, multi-quark resonance” states. The interpretation
of the f0(980) and a0(980) mesons as tetraquark states
nsn̄s̄ with I = 0 and I = 1, respectively, would give a
much higher mass (about 300 MeV) than the experi-
mental data. The studies on the mixing of the diquark-
antidiquark state nsn̄s̄ and the KK̄ state indicate that
the KK̄ molecular state does not exist in the quark mod-
els due to weak coupling and a large relative kinetic en-
ergy between the K and K̄ mesons. However, in our
calculation the mass of the first radial excitation of the
nnn̄n̄ diquark-antidiquark state is close to the mass of
the f0(980) meson. The problem with this assignment,
the small decay width of the f0(980)→KK̄ meson, can
be accounted for by the mixing of the nsn̄s̄ and ss̄ et al.
strange quark components with the nnn̄n̄ state.

At present, the nature of scalar mesons is still an
open question, and the interpretation of scalar mesons as
tetraquark states is a possibility. In fact, scalar mesons
should be the superpositions of qq̄, qqq̄q̄ and other
components in a Fock space expansion approach, and
the dominant one determined by quark dynamics. The
mixing between two-body and four-body configurations
would require knowledge of the quark-antiquark pair
creation-annihilation interaction, which is being calcu-
lated in our group by tentatively using a 3P0 model.
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